试验测量了安装不同声学负载时的增压发动机的进气噪声,分别用边界元法和计算流体动力学法(CFD法)计算了无流和有流条件下声学负载的声学特性,其中CFD法计算了负载的传递矩阵.用四负载最小二乘法提取进气噪声源,并计算了安装某负载时的进气噪声,与测量值对比,评估提取声源的准确性,发现结合CFD法计算的声源比边界元法计算值更准确,根据CFD法计算得到的进气噪声的2阶、4阶和6阶成分与测量值的最大误差为9dB.进一步结合用CFD法获得的噪声源和空滤器的传递矩阵,预测了安装空滤器时的进气噪声,预测结果不如安装负载时的预测结果准确,其2阶、4阶和6阶成分与测量值的最大误差为23 dB,但预测结果和测量结果的变化趋势一致,说明了采用CFD法计算传递矩阵,提取进气噪声源并预测进气噪声的可行性.%Measurement on intake noise of a turbocharged engine under various acoustic loads was made.Acoustic characteristics and loads were calculated using boundary element method (BEM) and computational fluid dynamics (CFD) approaches in the presence and absence of flow. Transfer matrices of the loads were calculated by CFD. A four-load least squares method was used to extract the intake acoustic source and the intake noise with certain load was calculated. Accuracy of the acoustic source was evaluated. Acoustic source extracted by CFD gains better accuracy than that by BEM. Maximum deviation of the intake noise of the calculated 2 nd, 4 th and 6 th order with CFD simulation is 9 dB to the measured results. Intake noise was predicted from the comparison of CFD calculated intake acoustic source and transfer matrix of air filter. Prediction without load is not accurate to that with load. Maximum deviation of intake noise of the calculated 2 nd, 4 th and 6 th order is 23 dB. But the trend of predicted intake noise is consistent to that of measured result. Feasibility of CFD in calculation of transfer matrix, extraction of intake acoustic source and prediction of intake noise is demonstrated.
展开▼