首页> 中文期刊> 《模式识别与人工智能》 >基于特征联合概率分布和实例的迁移学习算法

基于特征联合概率分布和实例的迁移学习算法

     

摘要

针对在单一匹配边缘概率分布以缩减源域和目标域的差异性时存在的泛化能力差的问题,提出联合边缘概率分布和条件概率分布减小域间差异性的基于特征和实例的迁移学习算法.通过核主成分分析在子空间中寻找样本新的特征表示,在该子空间中利用最小化最大均值差异,联合匹配边缘概率分布和条件概率分布以减小源域和目标域间的差异性,同时利用L2.1范数约束选择源域中相关实例进行训练,进一步提高迁移学习获得的模型泛化性能.在字符集和对象识别数据集上的实验表明文中算法的有效性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号