首页> 外文期刊>Pattern recognition letters >Double-bootstrapping source data selection for instance-based transfer learning
【24h】

Double-bootstrapping source data selection for instance-based transfer learning

机译:双引导源数据选择,用于基于实例的迁移学习

获取原文
获取原文并翻译 | 示例

摘要

Instance-based transfer is an important paradigm for transfer learning, where data from related tasks (source data) are combined with the data for the current learning task (target data) to train a learner for the current (target) task. However, in most application scenarios, the benefit of the source data is unclear. The source may contain both helpful and harmful instances to the target learning. Simply combining the source with the target data may result in performance deterioration (negative transfer). Selecting the instances from the source data that will benefit the target task is a key step for instance-based transfer learning. Most existing instance-based transfer methods lack such selection or mix source selection with the training for the target task. This leads to problems as the training may use source data harmful to the target. We propose a simple yet effective method for instance-based transfer learning in environments where the usefulness of the sources are unclear. The method employs a double-selection process, based on bootstrapping, to reduce the impact of irrelevant/harmful data in the source. Experiment results show that in most cases, our method produces more improvements through transfer than TrBagg (Kamishima et al., 2009) and TrAdaBoost (Dai et al., 2009). Our method can also deal with a wider range of transfer learning scenarios.
机译:基于实例的转移是转移学习的重要范例,在转移学习中,来自相关任务的数据(源数据)与当前学习任务的数据(目标数据)相结合,以训练学习者学习当前(目标)任务。但是,在大多数应用方案中,源数据的好处尚不清楚。源可能包含对目标学习有用和有害的实例。简单地将源与目标数据结合起来可能会导致性能下降(负传输)。从源数据中选择对目标任务有利的实例是基于实例的传输学习的关键步骤。大多数现有的基于实例的传输方法都缺乏这种选择或将源选择与目标任务的训练混合在一起。这会导致问题,因为训练可能会使用对目标有害的源数据。我们提出了一种简单而有效的方法,用于在来源的用途不清楚的环境中进行基于实例的迁移学习。该方法采用基于引导的双重选择过程,以减少源中无关/有害数据的影响。实验结果表明,在大多数情况下,与TrBagg(Kamishima等,2009)和TrAdaBoost(Dai等,2009)相比,我们的方法通过传输产生了更多的改进。我们的方法还可以处理更广泛的转移学习方案。

著录项

  • 来源
    《Pattern recognition letters》 |2013年第11期|1279-1285|共7页
  • 作者

    Di Lin; Xing An; Jian Zhang;

  • 作者单位

    Computer Science Division, Louisiana State University, Baton Rouge, LA 70803, United States;

    Computer Science Division, Louisiana State University, Baton Rouge, LA 70803, United States;

    Computer Science Division, Louisiana State University, Baton Rouge, LA 70803, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Transfer learning; Instance-based transfer learning; Source data selection; Bagging;

    机译:转移学习;基于实例的迁移学习;源数据选择;装袋;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号