首页> 中文期刊> 《组合机床与自动化加工技术》 >基于深度卷积网络的多工况寿命预测方法研究

基于深度卷积网络的多工况寿命预测方法研究

     

摘要

机电设备的寿命预测是状态维修中的一项重要任务,目前在多工况条件下的机电设备寿命预测效果并不理想,为了更好的预测多工况条件下的设备剩余寿命。文章对现有的涡轮风扇发动机开源数据集进行了研究,提出了一种新的多工况深度卷积神经网络模型(MC-DCNN)来估计剩余寿命。将原始数据输入文章提出的MC-DCNN模型中,模型输出不同工况下的设备剩余寿命。该模型能更好的预测多工况设备的剩余寿命,在实际生产中也更有价值。最后通过对公开数据集进行实验,并与现有的模型进行分析对比,证明该模型的有效性。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号