首页> 中文期刊> 《组合机床与自动化加工技术》 >基于CEEMDAN-MPE的滚动轴承故障识别

基于CEEMDAN-MPE的滚动轴承故障识别

     

摘要

针对滚动轴承振动信号的非平稳特性,实际工况下难以采集大量的样本信号分析故障状态,提出基于自适应噪声的完备经验模态分解(CEEMDAN)与多尺度排列熵(MPE)相融合的故障识别方法.首先,对振动信号进行小波阈值去噪,利用CEEMDAN算法对去噪后的非平稳振动信号自适应分解,对分解后的若干个固有模式分量(IMF)计算互相关系数;然后,重构信号,计算其MPE并组成故障特征向量;最后,把特征向量输入到支持向量机(SVM)中,以识别滚动轴承的故障类型.通过对仿真信号以及实际实验数据的对比验证分析,有效证明了该方法的识别准确率比基于EMD-MPE的故障识别方法提高5%,结果表明:基于CEEMDAN-MPE的滚动轴承SVM故障识别方法可以更准确地提取轴承的特征,并识别轴承的故障状态,有更强的实用性和有效性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号