首页> 外文期刊>Journal of information and computational science >Intrinsic Mode Function Feature Energy and PCA-based Fault Recognition Method of Rolling Bearing
【24h】

Intrinsic Mode Function Feature Energy and PCA-based Fault Recognition Method of Rolling Bearing

机译:基于本征模式功能特征能量和基于PCA的滚动轴承故障识别方法

获取原文
获取原文并翻译 | 示例

摘要

Scientists working with fault diagnosis regularly confront the problem: vibrations from faulty parts are nonlinear and non-stationary. Here an approach was proposed to solve the problem by combination of Intrinsic Mode Function (IMF) energy and Principal Component Analysis (PCA). The approach firstly implements empirical mode decomposition to the vibration signals, from which IMFs are obtained. PCA reduces the dimensionality of feature vectors composed of IMF energy values, by which bearing conditions can be visually diagnosed. And BP neural network is used to classify fault types. The approach was confirmed by case study on bearing defect recognition. The results demonstrate that the approach can recognize fault types with higher accuracy in shorter time.
机译:进行故障诊断的科学家经常会遇到这个问题:来自故障部件的振动是非线性且非平稳的。这里提出了一种通过固有模式函数(IMF)能量和主成分分析(PCA)相结合的方法来解决该问题的方法。该方法首先对振动信号进行经验模态分解,从中获得IMF。 PCA降低了由IMF能量值组成的特征向量的维数,从而可以直观地诊断轴承状况。并使用BP神经网络对故障类型进行分类。通过轴承缺陷识别的案例研究证实了该方法。结果表明,该方法可以在较短的时间内以较高的精度识别故障类型。

著录项

  • 来源
  • 作者单位

    Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control Yanshan University, Qinhuangdao 066004, China,Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University) Ministry of Education of China, Qinhuangdao 066004, China;

    Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control Yanshan University, Qinhuangdao 066004, China,Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University) Ministry of Education of China, Qinhuangdao 066004, China;

    Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control Yanshan University, Qinhuangdao 066004, China,Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University) Ministry of Education of China, Qinhuangdao 066004, China;

    Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control Yanshan University, Qinhuangdao 066004, China,Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University) Ministry of Education of China, Qinhuangdao 066004, China;

    Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control Yanshan University, Qinhuangdao 066004, China,Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University) Ministry of Education of China, Qinhuangdao 066004, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fault Recognition; Intrinsic Mode Function; Feature Energy; Principal Component Analysis; BP Neural Network;

    机译:故障识别;本征模式功能;特征能量;主成分分析;BP神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号