首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Fault Feature Extraction and Diagnosis of Rolling Bearings Based on Enhanced Complementary Empirical Mode Decomposition with Adaptive Noise and Statistical Time-Domain Features
【2h】

Fault Feature Extraction and Diagnosis of Rolling Bearings Based on Enhanced Complementary Empirical Mode Decomposition with Adaptive Noise and Statistical Time-Domain Features

机译:基于自适应噪声和统计时域特征的增强型互补经验模态分解的滚动轴承故障特征提取与诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a novel method is proposed to enhance the accuracy of fault diagnosis for rolling bearings. First, an enhanced complementary empirical mode decomposition with adaptive noise (ECEEMDAN) method is proposed by determining two critical parameters, namely the amplitude of added white noise (AAWN) and the ensemble trails (ET). By introducing the concept of decomposition level, the optimal AAWN can be determined by judging the mutation of mutual information (MI) between adjacent intrinsic mode functions (IMFs). Furthermore, the ET is fixed at two to reduce the computational cost. This method can avoid disturbance of the spurious mode in the signal decomposition and increase computational speed. Enhanced CEEMDAN demonstrates a more significant improvement than that of the traditional CEEMDAN. Vibration signals can be decomposed into a set of IMFs using enhanced CEEMDAN. Some IMFs, which are named intrinsic information modes (IIMs), effectively reflect the vibration characteristic. The evaluated comprehensive factor (CF), which combines the shape, crest and impulse factors, as well as the kurtosis, skewness, and latitude factor, is developed to identify the IIM. CF can retain the advantage of a single factor and make up corresponding drawbacks. Experiment results, especially for the extraction of bearing fault under variable speed, illustrate the superiority of the proposed method for the fault diagnosis of rolling bearings over other methods.
机译:本文提出了一种新的方法来提高滚动轴承故障诊断的准确性。首先,通过确定两个关键参数,即相加白噪声的幅度(AAWN)和合奏轨迹(ET),提出了一种采用自适应噪声的增强互补经验模式分解(ECEEMDAN)方法。通过引入分解级别的概念,可以通过判断相邻固有模式函数(IMF)之间互信息(MI)的变异来确定最佳AAWN。此外,将ET固定为两个,以减少计算成本。该方法可以避免信号分解中的杂散模式的干扰并提高计算速度。增强型CEEMDAN表现出比传统CEEMDAN更大的改进。可以使用增强型CEEMDAN将振动信号分解为一组IMF。一些称为内在信息模式(IIM)的IMF有效地反映了振动特性。开发了综合了形状,波峰和冲动因素以及峰度,偏度和纬度因素的综合因素(CF)来识别IIM。 CF可以保留单个因素的优点并弥补相应的缺点。实验结果,尤其是变速下轴承故障的提取,证明了所提出的方法在滚动轴承故障诊断中的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号