首页> 中文期刊> 《计算机工程与应用》 >基于改进密集连接型网络的光场深度估计

基于改进密集连接型网络的光场深度估计

     

摘要

针对传统的光场深度估计算法精度低、计算慢的问题,提出了一种改进DenseNet的多输入流密集连接型卷积神经网络进行光场深度估计的方法.该方法采用的密集连接的结构,减少了模型的计算量.对输入图片进行预处理,转化为极平面图EPI Volume(Epipolar Plane Image)结构,采用随机灰度化等数据增强方法克服训练数据不足,通过神经网络将EPI特征转化为深度信息.在HCI 4D光场数据集上的对比实验结果表明,该方法在均方误差和不良像素率上都取得了良好结果,并且在执行时间上大幅领先于传统算法.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号