首页> 外文期刊>Concurrency and computation: practice and experience >Minkowski Sommon Feature Map-based Densely Connected Deep Convolution Network with LSTM for academic performance prediction
【24h】

Minkowski Sommon Feature Map-based Densely Connected Deep Convolution Network with LSTM for academic performance prediction

机译:Minkowski Modmon具有基于地图的密集连接的深度卷积网络,具有LSTM,用于学术性能预测

获取原文
获取原文并翻译 | 示例

摘要

Student academic performance prediction plays a major role in the current educational systems to improve the quality of education. The conventional single classifier-based predictive analysis is not efficient to provide accurate results. In this paper, a novel technique called Minkowski Sommon Feature Map Densely connected Deep Convolution Network with LSTM (MSFMDDCN-LSTM) is introduced to predict the academic performance of students with higher accuracy and lesser time consumption. The MSFMDDCN-LSTM technique uses a densely connected deep convolution network to learn the given input for accurate prediction. The student activities are collected and stored in the organization dataset. The MSFMDDCN-LSTM technique starts with the data collection followed by performing the attributes selection and classification. The collected data are given to input layer to predict the students' academic achievement at the end of study program. Secondly, the importance of numerous dissimilar attributes or "features" is considered for student performance prediction using steepest descent Minkowski sommon mapping. After that, the classification is performed using LSTM to classify the input instances for accurate prediction. Finally, the classification results are observed in the output layer. The quantitative outcomes inferred that MSFMDDCN-LSTM technique performs well in terms of achieving higher precision, recall, f-measure, and lesser time consumption than the state-of-the-art methods.
机译:学生的学习成绩预测播放当前教育系统的主要作用,提高教育质量。传统的单一的基于分类的预测分析的效率不高,以提供精确的结果。在本文中,一种新的技术称为闵可夫斯基Sommon特征映射密集连接深卷积网络与LSTM(MSFMDDCN-LSTM)被引入到预测学生以更高的精度和更小的时间消耗的学习成绩。所述MSFMDDCN-LSTM技术使用密集连接深卷积网络去学习准确的预测给定的输入。学生活动,收集并存储在该组织的数据集。与数据收集的MSFMDDCN-LSTM技术开始,接着通过执行属性的选择和分类。所收集的数据被提供给输入层到预测学生的学习成绩在研究程序结束。其次,许多不同的属性或“功能”的重要性,用最速下降夫斯基sommon映射考虑学生的成绩预测。在此之后,分类是利用LSTM为准确的预测输入的实例进行分类来执行。最后,将分类结果在输出层中观察到。定量的结果推断,MSFMDDCN-LSTM技术执行以及在比状态的最先进的方法实现更高的精度,召回,F值,和较少时间消耗方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号