首页> 外文学位 >Influence of defects in epitaxial graphene towards material growth and device performances.
【24h】

Influence of defects in epitaxial graphene towards material growth and device performances.

机译:外延石墨烯中的缺陷对材料生长和器件性能的影响。

获取原文
获取原文并翻译 | 示例

摘要

Since its invention in 2004, Graphene, a two dimensional array of SP 2 bonded carbon atoms has received significant interest by the scientific community due to its unique electrical, optical and mechanical properties. A promising route to the synthesis of large-area graphene, is epitaxial graphene formed by sublimation of silicon atoms from Silicon carbide at elevated temperatures (>1200°C). Although the electronic and mechanical properties of graphene with perfect atomic lattice are outstanding, the structural defects, which may appear during graphene growth, can influence the growth mechanism and material properties. However, deviations from perfection, i.e. introducing dopants in semiconductors often considered as engineered defects, can be very useful in some applications, as they make it possible to achieve new functionalities.;In this thesis, a quantitative study is presented to investigate the role of structural defects on the growth of multilayer epitaxial graphene on polar(c plane Si and C face) and non-polar (a and m plane) 6H-SiC faces, with distinctly different defect profile and provide an insight for optimizing the EG growth. For Si-face with point defects, multilayer EG growth is influenced by diffusion of Si atoms to these defects as well as desorption through these defects. However, the growth on C-face and non-polar ( a and m plane) faces, the growth is limited by the lateral diffusion of the Si atoms to the line defects/grain boundaries.;Graphene is the ideal active material for gas detection owing to its physically stable surface, practically achievable thin form, and potentially fast response time. The structural defects inherent in EG grown on C-face allows diffusion and adsorption of gas molecules extending the remarkable surface sensitivity of EG to bulk multilayer films. The carrier transport phenomenon for three different gases (N2, NH3 and NO 2) in EG on C-face is investigated by Fourier Transform Infrared (FTIR) reflection spectroscopy and the 3 gases were clearly distinguished, enabling a new paradigm for multi-modal gas sensing using optical interrogation of EG surfaces towards EG electronic or optical noses.;Lastly, a novel technique is established to grow defect engineered thick multilayer (> 200 MLs) graphene on Si face 4H SiC substrates (0, 4 and 8 deg off cuts) than possible with solid-state decomposition at atmospheric pressure in Argon alone (~2ML). This method exploits the thermodynamic advantages of SiF4 to increase the Si-removal from the SiC surface, thereby increasing the graphene growth rate. The defect density for these EG layers varies from ~1 at 1400°C to <0.2 at 1600°C, enabling temperature controlled engineering of the defect profile of the material. A novel approach is also presented to estimate large number of graphene layers based on Raman and Infrared spectroscopy. This is critical for enabling defect-controlled applications in electrochemistry such as batteries and biosensors that require thick layers of activated graphitic carbon.
机译:自2004年发明石墨烯(一种二维SP 2键合碳原子阵列)以来,由于其独特的电,光学和机械性能,受到了科学界的极大关注。大面积石墨烯合成的一种有希望的途径是在高温(> 1200°C)下通过碳化硅中的硅原子的升华形成的外延石墨烯。尽管具有完美原子晶格的石墨烯的电子和机械性能非常出色,但可能在石墨烯生长过程中出现的结构缺陷会影响其生长机理和材料性能。然而,偏离完美的方法,即在半导体中引入掺杂剂(通常被认为是工程缺陷)在某些应用中可能非常有用,因为它们可以实现新的功能。极性(c面Si和C面)和非极性(a和m面)6H-SiC面上多层外延石墨烯生长的结构缺陷,具有明显不同的缺陷轮廓,为优化EG生长提供了见识。对于具有点缺陷的Si面,多层EG的生长受到Si原子向这些缺陷的扩散以及通过这些缺陷的脱附的影响。然而,在C面和非极性(a和m平面)面上的生长,生长受到Si原子向线缺陷/晶粒边界的横向扩散的限制。石墨烯是用于气体检测的理想活性材料由于其物理上稳定的表面,几乎可以实现的薄形式以及潜在的快速响应时间。在C面上生长的EG固有的结构缺陷允许气体分子扩散和吸附,从而将EG的显着表面敏感性扩展到块状多层膜。通过傅立叶变换红外(FTIR)反射光谱技术研究了C面上EG中三种不同气体(N2,NH3和NO 2)的载流子传输现象,并清楚地区分了这三种气体,从而为多峰气体提供了新的范例最后,建立了一种新技术来在Si面4H SiC衬底上(0、4和8度切角)生长缺陷工程化的厚多层石墨烯(> 200 MLs),从而建立了一种新颖的技术单独使用氩气(〜2ML)时,在大气压下进行固态分解可能无法实现。该方法利用SiF4的热力学优势来增加从SiC表面去除Si的速度,从而提高石墨烯的生长速率。这些EG层的缺陷密度从1400°C下的〜1到1600°C下的<0.2不等,从而可以对材料的缺陷分布进行温度控制工程设计。还提出了一种基于拉曼光谱和红外光谱估计大量石墨烯层的新颖方法。这对于实现电化学中的缺陷控制应用至关重要,例如需要厚厚的活化石墨碳层的电池和生物传感器等。

著录项

  • 作者

    Shetu, Shamaita Shithi.;

  • 作者单位

    University of South Carolina.;

  • 授予单位 University of South Carolina.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号