首页> 外文学位 >System Design of a Lorentz Force MEMS Magnetic Sensor.
【24h】

System Design of a Lorentz Force MEMS Magnetic Sensor.

机译:洛伦兹力MEMS磁传感器的系统设计。

获取原文
获取原文并翻译 | 示例

摘要

The growing demand of including an inertial measurement unit (IMU) in smart-phones, tablets and wearable devices to facilitate navigation and other location based services is rapidly increasing the market for low cost inertial sensors. At present the most commonly used magnetic sensor is a hall-effect sensor and therefore typically an IMU contains two or more separate chips wire-bonded in a single package. Since a Lorentz force sensor can be designed in the same process as other inertial sensor, it increases the possibility of fabricating a 6 DOF (Degrees of Freedom) or a 9 DOF IMU in a single die. The goal of this dissertation is to design a complete magnetic sensor system consisting of a Lorentz force sensor and interfacing low power electronics.;A micro-electromechanical-systems (MEMS) three-axis Lorentz force magnetometer based on a 0.24mm * 0.4mm2 MEMS resonator is presented here. Magnetic field can be detected in two axes using a single MEMS structure. Placing two structures perpendicular to each other in a single die makes three-axis sensing possible. Sensing is performed by exciting the MEMS resonator at its in-plane and out-of-plane mechanical resonant frequencies of 40.5 kHz and 107.4 kHz respectively. A modest die-level vacuum packaging results in in-plane and out-of-plane mechanical quality factors of 110 and 310 respectively. The sensor has a bandwidth of 184 Hz for z-axis and 189 Hz for x/y-axis magnetic field. With an excitation power of 2 mW, the sensor resolution is 285 nT/√Hz for z-axis magnetic field inputs and 344 nT/√Hz for x/y-axis magnetic field inputs. With an averaging time of 288 s the sensor shows an offset stability of 23 nT.;Two different sensing schemes were investigated for low power low noise sensing: 1) Continuous Time Current (CTC) using a trans-impedance amplifier (TIA) and 2) Continuous Time Voltage (CTV) sensing using a voltage buffer. Both the TIA and the buffer was designed and fabricated in TSMC's 0.18 micron process. A magnetic sensor fabricated in Stanford's epi-seal process was used to characterize the analog circuits. Although with similar power consumption (40 muW) the CTV scheme achieves lower noise resolution (230 nT/√Hz compared to 900 nT/√Hz achieved in CTC), higher magnetic sensitivity of the CTC scheme makes it a more favorable candidate to use in a close loop system.;To drive a Lorentz current through the low resistance MEMS flexure, a power efficient system was also designed. A dc-dc converter was used to lower the supply voltage from 1.8V to 542mV which was then chopped at the natural frequency of the MEMS sensor to generate the drive current. The dc-dc converter was designed to provide 1.16mA drive current to a MEMS flexure whose resistance can be as low as 450 Ω with a power efficiency over 70%. The total power consumption of the dc-dc converter is 0.844 mW.;To implement the complete close loop sensing system, a low power ASIC (with power consumption of 327.6 muW) was also designed using TSMC's 0.18 micron process. With slightly lower power consumption (1.17mW) than that of the hall-effect sensor, the complete system is estimated to achieve a lower magnetic noise resolution of 172 nT/√Hz..
机译:在智能电话,平板电脑和可穿戴设备中包括惯性测量单元(IMU)以便于导航和其他基于位置的服务的需求不断增长,这正在迅速增加低成本惯性传感器的市场。目前,最常用的磁传感器是霍尔效应传感器,因此,IMU通常包含两个或更多个单独键合在单个封装中的芯片。由于可以在与其他惯性传感器相同的过程中设计洛伦兹力传感器,因此增加了在单个模具中制造6自由度(自由度)或9自由度IMU的可能性。本文的目的是设计一个完整的磁传感器系统,该系统由洛伦兹力传感器和接口的低功率电子器件组成。基于0.24mm * 0.4mm2 MEMS的微机电系统(MEMS)三轴洛伦兹力磁力计此处介绍了谐振器。使用单个MEMS结构可以在两个轴上检测磁场。将两个相互垂直的结构放置在单个模具中可以进行三轴检测。通过分别以40.5 kHz和107.4 kHz的面内和面外机械谐振频率激励MEMS谐振器来执行检测。适当的管芯级真空封装会导致面内和面外机械品质因数分别为110和310。传感器的z轴带宽为184 Hz,x / y轴磁场带宽为189 Hz。当激励功率为2 mW时,z轴磁场输入的传感器分辨率为285 nT /√Hz,x / y轴磁场输入的传感器分辨率为344 nT /√Hz。平均时间为288 s,传感器的失调稳定性为23 nT .;针对低功耗低噪声传感,研究了两种不同的传感方案:1)使用跨阻放大器(TIA)的连续时间电流(CTC)和2 )使用电压缓冲器的连续时间电压(CTV)感应。 TIA和缓冲液都是以台积电的0.18微米工艺设计和制造的。用斯坦福大学的密封工艺制造的磁传感器用于表征模拟电路。尽管CTV方案具有类似的功耗(40μW),但噪声分辨率较低(230 nT /√Hz,而CTC为900 nT /√Hz),但CTC方案的较高的磁灵敏度使其成为更合适的候选方案。为了驱动通过低电阻MEMS挠性件的洛伦兹电流,还设计了一种节能系统。直流-直流转换器用于将电源电压从1.8V降至542mV,然后将其斩波为MEMS传感器的固有频率以产生驱动电流。 dc-dc转换器旨在为MEMS挠曲提供1.16mA驱动电流,该挠曲的电阻可低至450Ω。功率效率超过70%。 DC-DC转换器的总功耗为0.844 mW。为实现完整的闭环传感系统,还使用台积电的0.18微米工艺设计了低功耗ASIC(功耗为327.6μW)。与霍尔效应传感器相比,其功耗略低(1.17mW),估计整个系统可实现172 nT /√Hz的较低磁噪声分辨率。

著录项

  • 作者

    Rouf, Vashwar Tajdidur.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 91 p.
  • 总页数 91
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号