首页> 外文学位 >High-performance germanium-on-insulator MOSFETs for three-dimensional integrated circuits based on rapid melt growth.
【24h】

High-performance germanium-on-insulator MOSFETs for three-dimensional integrated circuits based on rapid melt growth.

机译:基于快速熔体生长的用于三维集成电路的高性能绝缘体上锗MOSFET。

获取原文
获取原文并翻译 | 示例

摘要

As silicon CMOS devices are scaled down to the nanometer regime, the signal delay and power consumption caused by metal interconnects have become increasingly important factors limiting the overall performance of integrated circuits (ICs). By stacking the circuits in the vertical direction, we can reduce the number and length of interconnects as well as integrating more functionalities on one chip. One of the major challenges in fabricating monolithic three-dimensional ICs (3D-ICs) is that when processing the upper layers of devices we cannot raise the temperature of the underlying metal interconnects above 400 °C. Germanium-on-insulator (GeOI) MOSFETs have become promising for monolithic 3D-ICs owing to their low processing temperatures. In this work, we will present our studies on the rapid melt growth (RMG) method, which was invented by the Plummer group at Stanford University in 2003, and its application in the fabrication of high-performance GeOI MOSFETs for monolithic 3D-ICs.;Using simulations incorporating undercooling and random nucleation, we have analyzed the RMG process with Ge film thicknesses between 5 nm and 200 nm and buried oxide thicknesses between 100 nm and 500 nm. The minimum temperature in the liquid Ge is less than 1 K below the melting point. In this temperature range, the random nucleation probability is extremely small and no nucleation events occur in the simulation, which agrees well with our previous experimental results and explains why we can obtain GeOI with high crystal quality by RMG. The release of latent heat at the growth front raises the temperature here to only about 0.1 K below the melting point. Thus the growth rate is on the order of centimeters per second, which is comparable to the maximum pulling rate of the Czochralski (CZ) growth of an ingot with a comparable diameter.;Then the RMG method is extended to 3D-IC fabrication with laser annealing as the heating source, which can melt Ge while avoiding heating the underlying metal interconnects above 400 °C. We have studied three schemes of laser annealing, namely excimer laser annealing, scanning pulsed laser annealing, and scanning continuous-wave (CW) laser annealing. Numerical analysis is used to simulate the melting and crystallization processes as well as the temperature in the underlying Al interconnect. We have carried out experiments to study these laser annealing schemes. Among them, scanning CW laser annealing is found to be the most promising in producing ultra-long high-quality single-crystalline GeOI stripes.;Finally, the fabrication of high-performance GeOI MOSFETs is studied by experiment. We have demonstrated the monolithic integration of GeOI p-FETs with bulk Si n-FETs based the RMG method. In order to solve the problem of high source-to-drain leakage current, we have fabricated GeOI FinFETs and gate-all-around (GAA) MOSFETs. The experimental results show that the leakage current is caused by the interface traps at the Ge/buried oxide interface and that it can be mitigated by passivating and gate-controlling all the surfaces of the Ge stripe in the channel region. The leakage current has been successfully reduced, leading to 4 orders of magnitude improvement on the on/off ratio, and a subthreshold swing of 71 mV/dec has been obtained. In the GAA MOSFET experiments, we have also studied low-temperature device processes for monolithic 3D-ICs.
机译:随着硅CMOS器件缩小到纳米级,金属互连引起的信号延迟和功耗已成为限制集成电路(IC)整体性能的越来越重要的因素。通过在垂直方向上堆叠电路,我们可以减少互连的数量和长度,以及在一个芯片上集成更多功能。制造单片三维IC(3D-IC)的主要挑战之一是,在处理器件的上层时,我们无法将底层金属互连的温度提高到400°C以上。绝缘体上的锗(GeOI)MOSFET由于其较低的处理温度,已成为单片3D-IC的有希望的材料。在这项工作中,我们将介绍我们对快速熔体生长(RMG)方法的研究,该方法是由斯坦福大学的Plummer小组于2003年发明的,并将其应用于制造单片3D-IC的高性能GeOI MOSFET。 ;使用包括过冷和随机成核的模拟,我们分析了RMG工艺,该工艺的Ge膜厚度在5 nm至200 nm之间,掩埋氧化物的厚度在100 nm至500 nm之间。液体Ge中的最低温度低于熔点小于1K。在此温度范围内,随机成核的可能性极小,并且在模拟中没有发生成核事件,这与我们先前的实验结果非常吻合,并解释了为什么我们可以通过RMG获得具有高质量晶体的GeOI。在生长前沿释放的潜热使温度仅升高到熔点以下约0.1K。因此,生长速率约为厘米/秒,与具有可比直径的铸锭的切克劳斯基(CZ)生长的最大拉动速率相当。然后,RMG方法扩展到了激光的3D-IC制造退火作为加热源,可以熔化Ge,同时避免将下面的金属互连加热到400°C以上。我们研究了三种激光退火方案,即准分子激光退火,扫描脉冲激光退火和扫描连续波(CW)激光退火。数值分析用于模拟熔化和结晶过程以及底层Al互连中的温度。我们已经进行了实验来研究这些激光退火方案。其中,扫描连续波激光退火被认为是生产超长高质量单晶GeOI条纹的最有希望的方法。最后,通过实验研究了高性能GeOI MOSFET的制造。我们已经证明了基于RMG方法的GeOI p-FET与体Si n-FET的单片集成。为了解决高源漏漏电流的问题,我们制造了GeOI FinFET和环栅(GAA)MOSFET。实验结果表明,泄漏电流是由Ge /埋入氧化物界面处的界面陷阱引起的,可以通过钝化和控制沟道区中Ge条带的所有表面来减轻泄漏电流。泄漏电流已成功降低,导通/截止比提高了4个数量级,并且亚阈值摆幅为71 mV / dec。在GAA MOSFET实验中,我们还研究了单片3D-IC的低温器件工艺。

著录项

  • 作者

    Feng, Jia.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号