首页> 外文学位 >Investigation of tungsten gate fully depleted SOI CMOS devices and circuits for ultralow voltage applications.
【24h】

Investigation of tungsten gate fully depleted SOI CMOS devices and circuits for ultralow voltage applications.

机译:用于超低压应用的钨栅完全耗尽SOI CMOS器件和电路的研究。

获取原文
获取原文并翻译 | 示例

摘要

The field of microelectronics is moving in the direction of low voltage, low power and high speed. Silicon-On-Insulator (SOI) technology has drawn serious attention from the dominating bulk silicon Complementary Metal-Oxide-Semiconductor (CMOS) technology with the improved performance at low voltages. Among the family of various SOI structures, fully depleted SOI (FDSOI) technology has been widely explored for the challenging trends of high speed and low power. However, the dependence of threshold voltage on the Si film thickness for dual-poly gate FDSOI devices makes it extremely difficult to have good threshold voltage uniformity with film thickness fluctuations.; This dissertation is concerned with the adoption of midgap tungsten gate and lightly doped channel design for ultra thin FDSOI technology to reduce the threshold voltage dependence on the SOI film thickness and channel doping density. In addition, this approach can set the threshold voltage of both NMOSFETs and PMOSFETs symmetrically at ±0.3V for ultra-low voltage applications.; The successful demonstration of tungsten gate CMOS technology is based on several factors. In particular, there is the need for compatibility with the underlying ultra-thin gate dielectric. In addition, the quality of the Si-SiO2 interface impacts the mobility and the subthreshold characteristics of the CMOS devices. Tungsten deposited by chemical vapor deposition (CVD) is selected in our study because of its compatibility with ultra-thin gate dielectric. However, the interface in CVD tungsten gate MOS structure exhibits high Dit (≥5 × 1011/cm 2-eV) after the conventional forming gas anneal at various temperatures for different periods of time. This work, for the first time, provides solutions to reduce Dit in the CVD tungsten gate MOS devices, which translate to the improvement in carrier mobility and subthreshold slope of tungsten gate MOS field effect transistors (MOSFETs).; Both dual poly silicon gate and tungsten gate processes have been developed and executed for the fabrication of FDSOI CMOS devices and circuits. The polysilicon gate FDSOI CMOS devices and circuits are characterized in detail to gain an understanding of critical processing issues and device physics. Poly gate depletion effects are observed from high frequency C-V measurements and are taken into account in the device model to extract the gate oxide thickness. A capacitance network model is used to characterize the subthreshold slope in short channel devices. This model is also used to reexamine the classical substrate bias effect on the threshold voltage for ultra thin FDSOI devices, where the carrier is no longer confined within a negligible distance to the front surface. The performance of FDSOI CMOS circuits has been characterized using 101 stage NAND gate ring oscillators with channel length 0.25μm and 0.12μm. The success in operating the ring oscillator circuit at 0.25V supply voltage is due to the very symmetrical NMOS and PMOS I-V characteristics with a 103 on-off current ratio at 0.25V gate bias. A figure of merit, the product of propagation delay and power dissipation, of 5fJ is obtained at 0.25V supply voltage on 0.25μm ring oscillators. The speed performance of ring oscillators is expected to improve with reductions in the load capacitance and series resistance.
机译:微电子学领域正在向低电压,低功率和高速方向发展。绝缘体上硅(SOI)技术已经从占主导地位的体硅互补金属氧化物半导体(CMOS)技术引起了严重关注,CMOS技术在低压下的性能得到了改善。在各种SOI结构的家族中,已经针对高速和低功耗的挑战性趋势广泛研究了全耗尽SOI(FDSOI)技术。然而,对于双多晶硅栅FDSOI器件,阈值电压对Si膜厚度的依赖性使得具有随膜厚度波动而具有良好阈值电压均匀性的极度困难。本论文涉及超薄FDSOI技术采用中间隙钨栅和轻掺杂沟道设计,以降低阈值电压对SOI膜厚度和沟道掺杂密度的依赖性。此外,对于超低压应用,这种方法可以将NMOSFET和PMOSFET的阈值电压对称地设置在±0.3V。钨栅极CMOS技术的成功演示基于多个因素。特别地,需要与下面的超薄栅极电介质兼容。另外,Si-SiO 2 界面的质量会影响CMOS器件的迁移率和亚阈值特性。在我们的研究中选择通过化学气相沉积(CVD)沉积的钨,因为它与超薄栅极电介质兼容。但是,CVD钨栅极MOS结构的界面表现出较高的D it (≥5×10 11 / cm 2 -eV)在不同温度下在不同时间进行常规成型气体退火之后。这项工作首次为减少CVD钨栅MOS器件中的D it 提供了解决方案,从而改善了钨栅的载流子迁移率和亚阈值斜率MOS场效应晶体管(MOSFET)。已经开发并执行了双多晶硅栅极工艺和钨栅极工艺,以制造FDSOI CMOS器件和电路。详细描述了多晶硅栅FDSOI CMOS器件和电路的特性,以了解关键的处理问题和器件物理特性。从高频C-V测量中可以观察到多晶硅栅极耗尽效应,并在器件模型中将其考虑在内以提取栅极氧化物厚度。电容网络模型用于表征短通道器件中的亚阈值斜率。该模型还用于重新检查经典衬底偏置对超薄FDSOI器件阈值电压的影响,在该超薄FDSOI器件中,载流子不再局限于与前表面的距离可以忽略不计。 FDSOI CMOS电路的性能已使用具有0.25μm和0.12μm沟道长度的101级NAND门环形振荡器进行了表征。在0.25V电源电压下成功运行环形振荡器电路的原因在于,NMOS和PMOS I-V具有非常对称的特性,在0.25V栅极偏置下具有10 3 开关电流比。在0.25μm环形振荡器上以0.25V的电源电压下可获得5fJ的品质因数,即传播延迟与功耗的乘积。随着负载电容和串联电阻的减小,环形振荡器的速度性能有望提高。

著录项

  • 作者

    Shang, Huiling.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:47:09

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号