首页> 外文学位 >Dynamic threshold MOSFETs for future integrated circuits.
【24h】

Dynamic threshold MOSFETs for future integrated circuits.

机译:用于未来集成电路的动态阈值MOSFET。

获取原文
获取原文并翻译 | 示例

摘要

As scaling of transistors continues to sub-tenth micron channel lengths, supply voltages must also be scaled in order to manage power dissipation. This will hinder circuit performance because lower supply voltages will cause transistors to have less current drive. The best way to keep some of the current lost due to lower supply voltage is to lower the threshold voltage, Vt, of the transistors. However, there is a limit to how much Vt can be lowered—if it is too low, it becomes impossible to turn the transistors off. Given this analysis, a tunable threshold voltage is highly desirable; the ability to increase Vt when the transistor is off to suppress leakage and to decrease Vt in the on-state to boost current drive is the key to maintaining circuit performance while keeping power dissipation under control.; This work focuses on methods to dynamically adjust the threshold voltage of a MOS transistor by using the body or backgate node of the device. Chapter 1 gives additional motivation and background to dynamic threshold MOS (DTMOS) transistors. It also reviews some of the previous work performed on this topic. Chapter 2 presents experimental results from DTMOS devices and compares them to conventional, fixed threshold devices. Chapter 3 sets up the theory for dynamic threshold voltage and shows how to optimize DTMOS performance. The asymmetric double gate MOSFET is proven to be the optimal DTMOS and is compared to the symmetric double gate in Chapter 4. Chapter 5 describes the FinFET, a quasi-planar structure which can implement both the asymmetric and symmetric double gate structures. Lastly, in order to investigate circuit performance for the FinFET, extensive 2D and 3D simulations were performed. The results are reported and analyzed in Chapter 6.
机译:随着晶体管的缩放比例继续缩小到十分之一微米以下的沟道长度,还必须缩放电源电压,以管理功耗。这将影响电路性能,因为较低的电源电压将导致晶体管的电流驱动较少。保持由于较低电源电压而造成的部分电流损失的最佳方法是降低晶体管的阈值电压 V t 。但是, V t 可以降低多少是有限制的—如果它太低,则无法关闭晶体管。根据这种分析,非常需要一个可调的阈值电压。晶体管关闭时提高 V t 的能力以抑制泄漏并在导通时降低 V t 状态升压电流驱动是保持电路性能同时控制功耗的关键。这项工作的重点是通过使用器件的主体或背栅节点动态调整MOS晶体管的阈值电压的方法。第1章为动态阈值MOS(DTMOS)晶体管提供了其他动机和背景。它还回顾了有关该主题的一些以前的工作。第2章介绍了DTMOS器件的实验结果,并将其与常规的固定阈值器件进行了比较。第3章建立了动态​​阈值电压的理论,并介绍了如何优化DTMOS性能。非对称双栅极MOSFET被证明是最佳的DTMOS,并与第4章中的对称双栅极进行了比较。第5章介绍了FinFET,这是一种准平面结构,可以实现非对称和对称双栅极结构。最后,为了研究FinFET的电路性能,进行了广泛的2D和3D模拟。在第6章中报告并分析了结果。

著录项

  • 作者

    Tang, Stephen Hsien Shun.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号