首页> 外文学位 >Thermal Stability of Plasma-enhanced chemical vapor deposition Silicon Nitride Passivation on AlGaN/GaN High-electron-mobility transistors.
【24h】

Thermal Stability of Plasma-enhanced chemical vapor deposition Silicon Nitride Passivation on AlGaN/GaN High-electron-mobility transistors.

机译:在AlGaN / GaN高电子迁移率晶体管上进行等离子增强化学气相沉积的氮化硅钝化的热稳定性。

获取原文
获取原文并翻译 | 示例

摘要

AlGaN/GaN HEMTs are the most promising high power switching devices. The material properties of III-nitrides are exceptionally better than that of Si and GaAs. GaN-based devices have been recorded to have higher operating temperatures and higher breakdown field due to the wide bandgap. AlGaN/GaN heterostructures forms 2DEG without doping due to the spontaneous polarization. The performance and reliability of AlGaN/GaN HEMTs are dependent on the structure of the AlGaN/GaN heterostructures.;Surface passivation has been proven to improve the 2DEG conductivity and device performance. 20 nm of plasma-enhanced chemical vapor deposition (PECVD) SiN was deposited on AlGaN/GaN HEMTs, and the PECVD SiN passivated sample demonstrated higher carrier concentration of 9.88 x 10 12 cm-2 compared to the un-passivated sample, 8.08 x 1012 cm-2.;High temperature annealing is an important processing step in the fabrication of the devices, and the effects have shown to improve the DC and RF performance. High temperature annealing may affect the structure and the 2DEG conductivity. The annealing effects modifies the AlGaN layer and the AlGaN/GaN interface. Herein, we present the a study on the thermal stability of the PECVD SiN passivation layer on AlGaN/GaN HEMT structures at high temperature anneals. High-resolution x-ray diffraction (HRXRD) measurements were used to investigate the strain of AlGaN layer, and Hall measurements were used to investigate the 2DEG conductivity.;PECVD SiN passivated and un-passivated AGaN/GaN HEMTs structure underwent high temperature thermal anneals for 30 minutes in N2. The starting temperature of the annealing is 400°C with step of 50°C until degradation. Degradation was determined through Hall sheet resistivity and mobility measurements. The ending annealed temperature is 1000 °C and 700 °C for passivated and control samples, respectively. From no anneal to degradation temperature, the 2DEG conductivity dropped by 15% and 34% for passivated and un-passivated samples, respectively. The HRXRD measurements found the change in-plane strain of the AlGaN layer after high temperature anneals. Higher in-plane strain showed higher 2DEG conductivity. In-plane strain from no anneal to degradation temperature dropped from 2% and 7% for passivated and un-passivated samples, respectively. Therefore, the passivated sample demonstrated to be more stable at high temperatures. The SiN passivation layer adds tensile stress to the AlGaN layer thus increased the piezoelectric effect and 2DEG conductivity.
机译:AlGaN / GaN HEMT是最有前途的高功率开关器件。 III族氮化物的材料性能比Si和GaAs的材料性能特别好。据记录,基于GaN的器件具有较宽的带隙,因此具有较高的工作温度和较高的击穿场。由于自发极化,AlGaN / GaN异质结构无需掺杂即可形成2DEG。 AlGaN / GaN HEMT的性能和可靠性取决于AlGaN / GaN异质结构的结构。表面钝化已被证明可以改善2DEG导电性和器件性能。在AlGaN / GaN HEMT上沉积了20 nm的等离子体增强化学气相沉积(PECVD)SiN,与未钝化样品相比,PECVD SiN钝化样品的载流子浓度为9.88 x 10 12 cm-2,而未钝化样品的载流子浓度为8.08 x 1012 cm-2 .;高温退火是器件制造中的重要工艺步骤,其效果已显示出可改善DC和RF性能。高温退火可能会影响结构和2DEG电导率。退火效应改变了AlGaN层和AlGaN / GaN界面。本文中,我们对高温退火下AlGaN / GaN HEMT结构上的PECVD SiN钝化层的热稳定性进行了研究。高分辨率x射线衍射(HRXRD)测量用于研究AlGaN层的应变,霍尔测量用于研究2DEG导电性。; PECVD SiN钝化和未钝化的AGaN / GaN HEMT结构经历了高温热退火在N2中放置30分钟。退火的起始温度为400°C,逐步降低至50°C。通过霍尔片电阻率和迁移率测量确定降解。钝化样品和对照样品的最终退火温度分别为1000°C和700°C。从无退火到降解温度,钝化和未钝化样品的2DEG电导率分别下降了15%和34%。 HRXRD测量发现高温退火后,AlGaN层的面内应变发生了变化。较高的平面应变显示较高的2DEG电导率。对于钝化和未钝化的样品,从无退火到降解温度的面内应变分别从2%和7%降低。因此,钝化样品在高温下表现出更稳定的性能。 SiN钝化层将拉伸应力添加到AlGaN层,从而提高了压电效应和2DEG电导率。

著录项

  • 作者

    Ha, Minh-Trang Teresa.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Materials science.;Engineering.
  • 学位 M.S.
  • 年度 2016
  • 页码 43 p.
  • 总页数 43
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:47:02

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号