首页> 外文学位 >Crystallographic finite element modeling for dislocation generation in semiconductor crystals grown by VGF process.
【24h】

Crystallographic finite element modeling for dislocation generation in semiconductor crystals grown by VGF process.

机译:通过VGF工艺生长的半导体晶体中位错生成的晶体学有限元建模。

获取原文
获取原文并翻译 | 示例

摘要

The generation and multiplication of dislocations in Gallium Arsenide (GaAs) and Indium Phosphide (InP) single crystals grown by the Vertical Gradient Freeze (VGF) process is predicted using a transient crystallographic finite element model. This transient model is developed by coupling microscopic dislocation motion and multiplication to macroscopic plastic deformation in the slip system of the grown crystals during their growth process. During the growth of InP and GaAs crystals, dislocations are generated in plastically deformed crystal as a result of crystallographic glide caused by excessive thermal stresses. The temperature fields are determined by solving the partial differential equation of heat conduction in a VGF crystal growth system. The effects of growth orientations and growth parameters (i.e., imposed temperature gradients, crystal radius and growth rate) on dislocation generation and multiplication in GaAs and InP crystals are investigated using the developed transient crystallographic finite element model. Dislocation density patterns on the cross section of GaAs and InP crystals are numerically calculated and compared with experimental observations.; For crystals grown along [001] and [111] orientations, the results show that more dislocations are generated as the temperature gradient, the crystal growth rate and the crystal radius increase. For the same growth process, it shows that the crystal grown along [111] orientation is a favorable growth direction to grow lower dislocation density crystals. All the results show a famous "W" shape and four fold symmetry dislocation density pattern in GaAs and InP crystals grown from both orientations regardless of crystal growth parameters, which agree well with the patterns observed in actual grown crystals. Therefore, this developed crystallographic model can be employed by crystal grower to design an optimal growth parameters and orientations for growing low dislocation density in advanced semiconductor and optical crystals.
机译:使用瞬态晶体学有限元模型预测了通过垂直梯度冻结(VGF)工艺生长的砷化镓(GaAs)和磷化铟(InP)单晶中位错的产生和繁殖。这种瞬态模型是通过将微观位错运动和乘法耦合到生长的晶体在其生长过程中的滑移系统中的宏观塑性变形而开发的。在InP和GaAs晶体的生长过程中,由于过度的热应力导致的晶体滑移,在塑性变形的晶体中产生了位错。通过求解VGF晶体生长系统中的热导率偏微分方程来确定温度场。使用开发的瞬态晶体学有限元模型研究了生长方向和生长参数(即施加的温度梯度,晶体半径和生长速率)对GaAs和InP晶体中位错生成和倍增的影响。对GaAs和InP晶体截面上的位错密度图形进行了数值计算,并与实验观察结果进行了比较。对于沿[001]和[111]方向生长的晶体,结果表明,随着温度梯度,晶体生长速率和晶体半径的增加,会产生更多的位错。对于相同的生长过程,表明沿[111]取向生长的晶体是生长较低位错密度晶体的有利生长方向。所有结果表明,无论晶体生长参数如何,从两个方向生长的GaAs和InP晶体均具有著名的“ W”形和四重对称位错密度图,这与在实际生长的晶体中观察到的图非常吻合。因此,晶体生长者可以利用这种发达的晶体学模型来设计最佳的生长参数和取向,以在先进的半导体和光学晶体中生长低位错密度。

著录项

  • 作者

    Sheu, Gary.;

  • 作者单位

    Florida Atlantic University.;

  • 授予单位 Florida Atlantic University.;
  • 学科 Engineering Mechanical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号