首页> 外文学位 >Growth control and design principles of self-assembled quantum dot multiple layer structures for photodetector applications.
【24h】

Growth control and design principles of self-assembled quantum dot multiple layer structures for photodetector applications.

机译:用于光电探测器的自组装量子点多层结构的生长控制和设计原理。

获取原文
获取原文并翻译 | 示例

摘要

Self-assembled quantum dots (SAQDs) formed by lattice-mismatch strain-driven epitaxy are currently the most advanced nanostructure-based platform for high performance optoelectronic applications such as lasers and photodetectors. While the QD lasers have realized the best performance in terms of threshold current and temperature stability, the performance of QD photodetectors (QDIPs) has not surpassed that of quantum well (QW) photodetectors. This is because the requirement of maximal photon absorption for photodetectors poses the challenge of forming an appropriately-doped large number of uniform multiple SAQD (MQD) layers with acceptable structural defect (dislocation etc.) density. This dissertation addresses this challenge and, through a combination of innovative approach to control of defects in MQD growth and judicious placement of SAQDs in a resonant cavity, shows that SAQD based quantum dot infrared photodetectors (QDIPs) can be made competitive with their quantum well counterparts. Specifically, the following major elements were accomplished: (i) the molecular beam epitaxy (MBE) growth of dislocation-free and uniform InAs/InAlGaAs/GaAs MQD strained structures up to 20-period, (ii) temperature-dependent photo- and dark-current based analysis of the electron density distribution inside the MQD structures for various doping schemes, (iii) deep level transient spectroscopy based identification of growth procedure dependent deleterious deep traps in SAQD structures and their reduction, and (iv) the use of an appropriately designed resonant cavity (RC) and judicious placement of the SAQD layers for maximal enhancement of photon absorption to realize over an order of magnitude enhancement in QDIP detectivity. The lattermost demonstration indicates that implementation of the growth approach and resonant cavity strategy developed here while utilizing the currently demonstrated MIR and LWIR QDIPs with detectivities > 10 10 cmHz1/2/W at ∼ 77 K will enable RC-QDIP with detectivites > 1011 cmHz1/2/W that become competitive with other photodetector technologies in the mid IR (3 -- 5 mum) and long wavelength IR (8 -- 12 mum) ranges with the added advantage of materials stability and normal incidence sensitivity.;Extended defect-free and size-uniform MQD structures of shallow InAs on GaAs (001) SAQDs capped with In0.15Ga0.85As strain relief layers and separated by GaAs spacer layer were grown up to 20 periods employing a judicious combination of MBE and migration enhanced epitaxy (MEE) techniques and examined by detailed transmission electron microscopy studies to reveal the absence of detectable extended defects (dislocation density ∼ 107/cm2). Photoluminescence studies revealed high optical quality.;As our focus was on mid-infrared detectors, the MQD structures were grown in n (GaAs) -- i (MQD) -- n (GaAs) structures providing electron occupancy in at least the quantum confined ground energy states of the SAQDs and thus photodetection based upon transitions to electron excited states. Bias and temperature-dependent dark and photocurrent measurements were carried out for a variety of doping profiles and the electron density spatial distribution was determined from the resulting band bending profiles. It is revealed that almost no free electrons are present in the middle SAQD layers in the 10-period and 20-period n--i--n QDIP structures, indicating the existence of a high density (∼1015/cm3) of negative charges which can be attributed to electrons trapped in deep levels.;To examine the nature of these deep traps, samples suitable for deep level transient spectroscopy measurement were synthesized and examined. These studies, carried out for the first time for SAQDs, revealed that the deep traps are dominantly present in the GaAs overgrowth layers grown at 500°C by MBE. For structures involving GaAs overgrowths using MEE at temperatures as low as 350°C, the deep trap density in the GaAs overgrowth layer was found to be significantly reduced by factor of ∼ 20. Thus, employing MEE growth for GaAs spacer layers in n--i(20-period MQD)-- n QDIP structures, electrons could be provided to all the SAQDs owing to the significantly reduced deep trap density.;Finally, for enhancement of the incident photon absorption, we designed and fabricated asymmetric Fabry-Perot resonant cavity-enhanced QDIPs. For effective enhancement, SAQDs with a narrow photoresponse in the 3 -- 5 mum infrared regime were realized utilizing [(AlAs)1(GaAs)4]4 short-period superlattices as the confining barrier layers. Incorporating such SAQDs in RC-QDIPs, we successfully demonstrated ∼ 10 times enhancement of the QDIP detectivity. As stated above, this makes RC-QDIPs containing QDIPs with the currently demonstrated detectivities of ∼ 1010 cmHz 1/2/W at ∼ 77 K competitive with other IR photodetector technologies.
机译:由晶格失配应变驱动外延形成的自组装量子点(SAQD)是目前用于高性能光电应用(如激光器和光电探测器)的最先进的基于纳米结构的平台。尽管QD激光器已在阈值电流和温度稳定性方面实现了最佳性能,但QD光电探测器(QDIP)的性能尚未超过量子阱(QW)光电探测器的性能。这是因为对光电探测器的最大光子吸收要求带来了挑战,即形成适当掺杂的大量均匀的多个SAQD(MQD)层,并具有可接受的结构缺陷(位错等)密度。本论文解决了这一挑战,并通过结合创新的方法来控制MQD生长中的缺陷以及明智地将SAQD放置在谐振腔中,表明基于SAQD的量子点红外光电探测器(QDIP)可以使其与量子阱同类产品竞争。 。具体而言,完成了以下主要工作:(i)分子束外延(MBE)生长至20个周期的无位错且均匀的InAs / InAlGaAs / GaAs MQD应变结构,(ii)温度依赖的光暗-基于电流的各种掺杂方案的MQD结构内部电子密度分布分析;(iii)基于深能级瞬态光谱的SAQD结构中依赖于生长过程的有害深阱的诱因及其还原的识别,以及(iv)使用适当的设计谐振腔(RC)和明智地放置SAQD层,以最大程度地提高光子吸收,从而实现QDIP探测能力提高一个数量级。最新的演示表明,此处开发的生长方法和谐振腔策略的实施,同时利用了当前展示的MIR和LWIR QDIP,在约77 K时的检出率> 10 10 cmHz1 / 2 / W,将使RC-QDIP的检出率> 1011 cmHz1 / 2 / W在中红外(3-5 mum)和长波长红外(8-12 mum)范围内与其他光电探测器技术竞争,具有材料稳定性和法向入射灵敏度的额外优势。利用MBE和迁移增强外延(MEE)的明智组合,在盖有In0.15Ga0.85As应变消除层并被GaAs隔离层隔开的GaAs(001)SAQD上形成浅InAs且尺寸均匀的MQD结构生长到20个周期技术,并通过详细的透射电子显微镜研究进行检查,以发现不存在可检测到的扩展缺陷(位错密度<〜107 / cm2)。光致发光研究显示出较高的光学质量。;由于我们的重点是中红外探测器,因此MQD结构生长在n(GaAs)-i(MQD)-n(GaAs)结构中,至少在量子受限的范围内提供了电子占有率SAQD的基态能量,从而基于向电子激发态的跃迁进行光电检测。对各种掺杂曲线进行了偏压和温度相关的暗电流和光电流测量,并根据所得的带弯曲曲线确定了电子密度的空间分布。据揭示,在10周期和20周期n--n--n QDIP结构的中间SAQD层中几乎不存在自由电子,表明存在高密度(〜1015 / cm3)的负电荷为了检查这些深陷阱的性质,合成并检查了适用于深层瞬态光谱测量的样品。这些首次针对SAQD进行的研究表明,MBE在500°C下生长的GaAs过度生长层中主要存在深陷阱。对于在低至350°C的温度下使用MEE进行GaAs过度生长的结构,发现GaAs过度生长层中的深陷阱密度显着降低了约20倍。因此,对n--中的GaAs间隔层采用MEE生长i(20周期MQD)-n QDIP结构,由于深陷阱密度显着降低,因此可以向所有SAQD提供电子;最后,为了增强入射光子吸收,我们设计和制造了不对称的Fabry-Perot共振腔增强的QDIP。为了有效地增强,利用[(AlAs)1(GaAs)4] 4短周期超晶格作为围阻层,实现了在3-5um红外条件下具有狭窄光响应的SAQD。将此类SAQD结合到RC-QDIP中,我们成功地证明了QDIP探测能力提高了约10倍。如上所述,这使得包含QDIP的RC-QDIP具有目前证明的在〜77 K下的〜1010 cmHz 1/2 / W的探测能力,与其他IR光电探测器技术相比具有竞争力。

著录项

  • 作者

    Asano, Tetsuya.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 362 p.
  • 总页数 362
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号