首页> 外文学位 >Tuning indium arsenide quantum dot electronic structure using (indium aluminum gallium)arsenide capping layers and application to infrared photodetectors.
【24h】

Tuning indium arsenide quantum dot electronic structure using (indium aluminum gallium)arsenide capping layers and application to infrared photodetectors.

机译:使用(铟铝镓)砷化物覆盖层调谐砷化铟量子点电子结构并将其应用于红外光电探测器。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation contributes to the subjects of (i) molecular beam epitaxical growth and characterization of strain-driven self-assembled InAs/GaAs coherent island based quantum dots (QDs), (ii) manipulation of such InAs QD electronic states and associated transitions utilizing AlxGa 1−xAs, InxGa1−xAs, or InxAl yGa1−x−yAs capping layers, and (iii) application of such InAs/(InAlGa)As QDs to infrared photodetectors (QDIPs).; A slow-growth-rate (at 0.054 ML/sec) QD formation is introduced to realize high-quality uniform InAs/(InAlGa)As QDs. Such QDs are characterized utilizing photoluminescence (PL), PL excitation spectroscopy, atomic force microscopy, and transmission electron microscopy. The QD growth kinetics is discussed by comparing with commonly employed relatively fast-growth-rate (at 0.22 ML/sec) QD formation.; To manipulate electronic states and associated transitions of such InAs/GaAs QDs, part of the GaAs capping layer is replaced with AlxGa 1−xAs, InxGa1−xAs, or InxAlyGa1−x−yAs layers. Al xGa1−xAs insertions result in blueshifted inter- and intraband transition wavelengths (with respect to those of InAs/GaAs QDs) because of the enhanced confinement potential. By contrast, InxGa 1−xAs insertions allow redshifted inter- and intraband transition wavelengths because of overall lowering of the confinement potential via strain relief and chemical difference effects. Moreover, the InxGa 1−xAs layer regions between the InAs QDs act as a quantum well (QW) having its own energy states. Indeed, we find that the long-wavelength IR (LWIR) photoresponse involves QD intraband transitions to final states that are likely coupled to the QW electron energy states. To further the objective of controlled manipulation of the electronic states in InAs QDs, we introduce the notion of a lateral potential confinement layer (LPCL) whose judicious placement during island capping allows selective impact on ground and excited electron and hole states.; Finally, as an application of self-assembled epitaxical island QDs, we have performed a comprehensive study on n-i(5 QD layers)-n QDIPs. The QDIP performance is significantly enhanced by introducing AlxGa 1−xAs dark current blocking layers into the QDIP active regions. The Al0.2Ga0.8As-QDIP shows the highest 77 K detectivity for a QDIP to-date: 9.6 × 109 cmHz1/2/W at 6.2 μm. We also tailor detection bands of QDIPs to the LWIR (8–14 μm) regime using InxGa1−xAs strain-relieving capping layers that also act as QWs. (Abstract shortened by UMI.)
机译:本论文有助于(i)分子束外延生长和应变驱动自组装InAs / GaAs相干岛基量子点(QD)的表征,(ii)利用Al操纵此类InAs QD电子态及相关跃迁 x Ga 1-x As,In x Ga 1-x As或In x < / sub> Al y Ga 1-x−y 作为覆盖层,以及(iii)将此类InAs /(InAlGa)As量子点应用于红外光电探测器(QDIP)。 ;引入了慢速生长速率(0.054 ML / sec)的量子点形成,以实现高质量的均匀InAs /(InAlGa)As量子点。利用光致发光(PL),PL激发光谱,原子力显微镜和透射电子显微镜来表征这种QD。通过与常用的相对较快的生长速率(以0.22 ML / sec)的QD形成进行比较来讨论QD的生长动力学。为了操纵此类InAs / GaAs QD的电子状态和相关的跃迁,用Al x Ga 1-x As,In x代替部分GaAs覆盖层 Ga 1-x As或In x Al y Ga 1-x-y As层。由于限制电位增强,Al x Ga 1-x As插入会导致蓝移的带内和带内跃迁波长(相对于InAs / GaAs QD而言)。相比之下,In x Ga 1-x As插入允许带内和带内跃迁波长发生红移,这是因为通过应力消除和化学差异效应总体上降低了约束电位。此外,InAs QD之间的In x Ga 1-x As层区域充当具有自己能量态的量子阱(QW)。的确,我们发现长波长IR(LWIR)光响应涉及QD带内跃迁到可能与QW电子能量状态耦合的最终状态。为了进一步实现InAs量子点中电子状态的受控操纵的目的,我们引入了横向电势限制层(LPCL)的概念,在岛盖过程中,通过明智地放置,可以选择性地影响基态,激发态电子和空穴态。最后,作为自组装外延岛QD的应用,我们对n-i(5个QD层)-n个QDIP进行了全面的研究。通过将Al x Ga 1-x 作为暗电流阻挡层引入QDIP有源区域,可以显着提高QDIP性能。迄今为止,Al 0.2 Ga 0.8 As-QDIP对QDIP的探测灵敏度最高,为9.6×10 9 cmHz 1/2 / W(6.2μm)。我们还使用In x Ga 1-x 作为缓解应力的覆盖层(也充当QW),将QDIP的检测带调整为LWIR(8–14μm)方案。 (摘要由UMI缩短。)

著录项

  • 作者

    Kim, Eui-Tae.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Materials Science.; Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.4564
  • 总页数 297
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号