首页> 外文会议>Society of Photo-Optical Instrumentation Engineers (SPIE);SPIE Proceedings >Maskless Optical Lithography using MEMs-based Spatial-Light Modulators
【24h】

Maskless Optical Lithography using MEMs-based Spatial-Light Modulators

机译:使用基于MEMs的空间光调制器进行无掩模光学光刻

获取原文

摘要

The semiconductor industry has been driven by significant improvements in optical-lithographic capability. Asfeature sizes on the wafer shrink faster than the wavelength of the exposing illumination, increasingly complex andexpensive steps such as immersion, resolution-enhancement techniques, and optical-proximity correction (OPC) arerequired. Traditionally, high costs have been amortized over large volumes of chips, and by progressive technologicalmaturity. Optical lithography using MEMs-based spatial-light modulators provides an alternative means of lithography.Significantly lower costs-of-ownership coupled with throughputs acceptable for mask manufacturing, mask prototyping,and low-volume-chip manufacturing are the enabling attributes of such techniques. At MIT, we have pursued a uniqueversion of this technology, which we call Zone-Plate-Array Lithography (ZPAL). In ZPAL, an array of high-numericalaperturediffractive lenses (for example, zone plates) is used to create an array of tightly focused spots on the surface of aphotoresist-coated substrate. Light directed to each zone plate is modulated in intensity by one pixel on an upstreamspatial-light modulator. The substrate is scanned, and patterns of arbitrary geometry are written in a “dot-matrix”fashion. In this paper, we describe results from our proof-of-concept ZPAL system and its future potential. Lithographyusing distributed, tightly focused spots presents a different set of advantages and challenges compared to traditionaloptical-projection lithography. We discuss some of these issues and how they bear on practical system designs.
机译:光刻能力的显着提高推动了半导体行业的发展。晶圆上的特征尺寸缩小速度快于曝光照明的波长,因此需要越来越复杂且昂贵的步骤,例如浸没,分辨率增强技术和光学邻近校正(OPC)。传统上,高成本已通过大量芯片以及渐进的技术成熟度进行摊销。使用基于MEMs的空间光调制器的光学光刻技术提供了另一种光刻方法,拥有成本显着降低,加上掩模制造,掩模原型制作和小批量芯片制造可接受的吞吐量,是此类技术的使能属性。在麻省理工学院,我们追求了这项技术的独特版本,我们称之为区域平板阵列光刻(ZPAL)。在ZPAL中,使用高数字孔径衍射透镜阵列(例如波带片)在光致抗蚀剂涂层的基材表面上形成紧密聚焦的光斑阵列。在上游空间光调制器上,导向每个分区板的光的强度由一个像素进行调制。扫描基板,并以“点矩阵”形式写入任意几何图形。在本文中,我们描述了概念验证ZPAL系统的结果及其未来潜力。与传统的光学投影光刻技术相比,使用分布式,紧密聚焦点的光刻技术具有不同的优势和挑战。我们讨论其中一些问题,以及它们如何影响实际系统设计。

著录项

  • 来源
  • 会议地点
  • 作者单位

    Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge MA rmenon@nano.mit.edu;

    Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge MA;

    Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge MA Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge MA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号