【24h】

USE OF NEURAL NETWORKS TO DEVELOP ROBUST BACKCALCULATION ALGORITHMS FOR NONDESTRUCTIVE EVALUATION OF FLEXIBLE PAVEMENT SYSTEMS

机译:使用神经网络开发鲁棒的反向计算算法,用于柔性路面系统的非破坏性评估

获取原文
获取原文并翻译 | 示例

摘要

Artificial neural networks (ANNs) are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex problems as an alternative to using more traditional techniques. Recent research at the Iowa State University has focused on the use of artificial neural networks (ANNs) as pavement structural analysis tools for accurate and rapid prediction of pavement layer moduli and critical pavement responses (stresses, strains and deflections) of conventional flexible pavements subjected to highway pavement loadings. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns collected from the Falling Weight Deflectometer (FWD) field tests, several network architectures were trained with varying levels of noise in them. Applied noise levels in deflection basins and pavement layer thicknesses ranged from ± 2% to ± 10% to train the robust ANN models that can account for the variations in deflection measurements and pavement layer thicknesses due to poor construction practices. ANN models then trained with the results from the ILLI-PAVE finite element program solutions have been found to be viable alternatives. The trained ANN-based backcalculation models were capable of rapidly predicting the pavement layer moduli and critical pavement responses and pavement surface deflections with very low average errors compare to those obtained directly from the finite element analyses.
机译:人工神经网络(ANN)是有价值的计算智能工具,越来越多地被用来解决资源密集型复杂问题,这是使用传统技术的替代方法。爱荷华州立大学的最新研究侧重于使用人工神经网络(ANN)作为路面结构分析工具,以准确,快速地预测传统柔性路面在路面受力后的路面层模量和临界路面响应(应力,应变和挠度)。公路路面荷载。为了开发出更强大的网络,可以承受从落锤挠度计(FWD)现场测试中收集到的嘈杂或不准确的路面偏转模式,对几种网络架构进行了培训,使它们具有不同的噪声水平。在偏流盆地和路面层厚度中施加的噪声水平在±2%到±10%的范围内,以训练鲁棒的ANN模型,该模型可以解释由于不良的施工实践而导致的挠度测量值和路面层厚度的变化。然后发现,使用ILLI-PAVE有限元程序解决方案的结果进行训练的ANN模型是可行的选择。与直接从有限元分析获得的平均误差相比,经过训练的基于ANN的反算模型能够以非常低的平均误差快速预测路面层的模量和临界路面响应以及路面表面挠度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号