首页> 外文期刊>Neural Computing and Applications >Artificial neural networks–based backcalculation of the structural properties of a typical flexible pavement
【24h】

Artificial neural networks–based backcalculation of the structural properties of a typical flexible pavement

机译:基于人工神经网络的典型柔性路面结构特性的反算

获取原文
获取原文并翻译 | 示例

摘要

Pavement evaluation is one of the foremost phases in all pavement engineering activities. In the backcalculation process, the researcher or the engineer varies the structural properties of the layers until the theoretical (calculated) deflections and the obtained (measured) deflections from FWD tests are closely matched to each other within a tolerable limit. However, this process is substantially time-consuming and poses some difficulties due to inherent inaccuracies in the results. In this study, synthetically derived deflections from a typical flexible pavement are used to estimate asphaltic concrete layer’s elastic modulus, Poisson’s ratio and thickness. Furthermore, artificial neural network (ANN) is utilized to determine the structural parameters, and it can be clearly seen that satisfactory results are obtained. ANN estimation of the three pavement layer characteristic parameters, that is, layer elastic modulus, Poisson’s ratio and layer thickness, was carried out for the first time in the study.
机译:路面评估是所有路面工程活动中最重要的阶段之一。在反算过程中,研究人员或工程师改变层的结构特性,直到理论(计算)挠度和从FWD测试获得的(测量)挠度在可承受的范围内彼此紧密匹配。但是,该过程非常耗时,并且由于结果固有的不准确性而造成一些困难。在这项研究中,使用典型挠性路面的合成变形来估算沥青混凝土层的弹性模量,泊松比和厚度。此外,利用人工神经网络(ANN)确定结构参数,可以清楚地看到获得了满意的结果。在研究中首次对三个路面层特征参数即层弹性模量,泊松比和层厚度进行了人工神经网络估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号