首页> 外文会议>Reflection, scattering, and diffraction from surfaces II >Mechanical Surface Treatment to Obtain Optically Cooperative Surfaces vis-a-vis Fringe Projection
【24h】

Mechanical Surface Treatment to Obtain Optically Cooperative Surfaces vis-a-vis Fringe Projection

机译:机械表面处理以获得与条纹投影相对应的光学配合表面

获取原文
获取原文并翻译 | 示例

摘要

Fringe projection techniques are widely used for geometry measurement of synchro rings inside a manufacturing chain, since a dense areal geometrical data set is needed to evaluate all the key features. Post-process machined parts exhibit optically incooperative surfaces towards triangulation techniques. Hence these parts can't be measured accurately using fringe projection systems. The optical incooperativity originates from the scattering characteristics of the surface. Polished surfaces exhibit a narrow angle of light refraction, whereas rough surfaces scatter the light over a hemisphere more homogenously. The angle range at which an incident light ray is scattered is the basis for a definition of optical cooperativity. The wider the range, the higher is the optical cooperativity of the surface.rnIn order to produce optically cooperative surfaces of machined parts for the use of fringe projection measuring systems, we employ methods of surface treatment. One promising mechanical method under investigation to obtain optical cooperativity with technical surfaces is done by blasting the surface with fused alumina (EKF1000). The blasted surface leads to an increased roughness which can be controlled using the blast parameters, i.e. blast-pressure, blast-duration and the distance of the blaster to the part surface.rnIn this paper the effects of different parameters of the blast-process on the surface roughness, the optical roughness and on the optical cooperativity vis-a-vis fringe projection techniques are examined. Optimal parameter settings result in a sub-micrometer change with respect to the object surface. Since the effects due to a variation of the parameters are dependant on the object material, we restrict our research to the case-hardening steel 1.7193 (16MnCrS5).
机译:条纹投影技术被广泛用于制造链内部同步环的几何测量,因为需要密集的面几何数据集来评估所有关键特征。后加工的零件在三角测量技术上表现出光学上不配合的表面。因此,使用条纹投影系统无法准确地测量这些零件。光学不合作性源自表面的散射特性。抛光的表面显示出狭窄的光折射角,而粗糙的表面则将光更均匀地散射到半球上。入射光线的散射角度范围是定义光学合作性的基础。范围越宽,表面的光学协作性就越高。为了使用条纹投影测量系统生产加工零件的光学协作表面,我们采用了表面处理方法。一种正在研究中的有前途的机械方法,用于获得与工业表面的光学协作性,方法是用熔融氧化铝(EKF1000)喷砂表面。喷砂表面会导致粗糙度增加,可以使用喷砂参数(例如喷砂压力,喷砂持续时间和喷砂机到零件表面的距离)来控制粗糙度。检验了表面粗糙度,光学粗糙度以及在光学协同性上的条纹投影技术。最佳的参数设置会导致相对于物体表面的亚微米级变化。由于参数变化带来的影响取决于目标材料,因此我们的研究限于表面硬化钢1.7193(16MnCrS5)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号