首页> 外文会议>Optical Microlithography XIX pt.1 >(Lens) Design For (Chip) Manufacture: Lens tolerancing based on linewidth calculations in hyper-NA, immersion lithography systems
【24h】

(Lens) Design For (Chip) Manufacture: Lens tolerancing based on linewidth calculations in hyper-NA, immersion lithography systems

机译:(芯片)制造的(镜片)设计:基于超NA,浸没式光刻系统中线宽计算的镜片公差

获取原文
获取原文并翻译 | 示例

摘要

Tolerancing of lithographic imaging systems is a crucial step in the design of these lens systems. Usually a metric such as maximum RMS wavefront error is specified, and lens surface error budgets (curvature, tilt, decenter,...) are derived to ensure the specification is satisfied. Simple compensation schemes are then used to optimize "yield", that is, to maximize the chances of achieving the designed value of the RMS wavefront error. Software that performs these computations has been available to the lens design community for many years. The concept of tolerancing can be applied to other merit functions as well, but with the advent of hyper-NA, immersion systems for sub-90 nm lithography, questions arise about the efficacy of using RMS wavefront error as an accurate predictor of performance change. For example, nontrivial Jones matrices across the exit pupil give rise not only to scalar phase and transmission variations across the pupil, but also differential changes to transmission ("diattenuation") and phase ("retardance") that are not taken into account in standard wavefront error calculations, and depend upon the incident polarization. However, a merit function based on such quantities is not very useful to the lithographer on the fab floor. For the lithographer, it is desirable to build the system based on more direct metrics, such as across-chip-linewidth-variation (ACLV) or H-V bias, provided the metrics are based on fundamental properties of the imaging system, and are not excessively dependent on process specific information. We have developed software to determine manufacturing and alignment tolerances of a lens using a set of merit functions that are based on linewidth predictions. These include across-chip linewidth variation (ACLV), H-V bias, L-R bias, overlay error and telecentricity error. The calculation of these quantities includes a simple resist development model. In this paper, we will show results of a tolerancing study on a hyper-NA immersion lens that uses this software.
机译:光刻成像系统的公差是这些透镜系统设计中的关键步骤。通常会指定诸如最大RMS波前误差之类的指标,并得出镜片表面误差预算(曲率,倾斜度,偏心等)以确保满足规格要求。然后,使用简单的补偿方案来优化“产量”,即最大化获得RMS波前误差设计值的机会。执行这些计算的软件已经可供镜片设计社区使用多年。容差的概念也可以应用于其他性能函数,但是随着超NA的出现,用于90 nm以下光刻的浸没系统,人们开始质疑使用RMS波前误差作为性能变化的准确预测指标的功效。例如,出射光瞳上的非平凡琼斯矩阵不仅会引起光瞳上的标量相位和透射率变化,而且还会引起标准中未考虑的透射率(“衰减”)和相位(“延迟”)的差异变化。波前误差的计算,并取决于入射极化。但是,基于这样的数量的功绩函数对工厂地板上的平版印刷者不是很有用。对于光刻者而言,希望基于更直接的度量标准(例如跨芯片线宽变化(ACLV)或HV偏置)构建系统,前提是该度量标准是基于成像系统的基本属性,而又不过分取决于过程的特定信息。我们已经开发了软件,可以使用一套基于线宽预测的优值函数来确定镜片的制造和对准公差。其中包括跨芯片线宽变化(ACLV),H-V偏置,L-R偏置,覆盖误差和远心误差。这些数量的计算包括一个简单的抗蚀剂显影模型。在本文中,我们将显示使用此软件的超NA浸没透镜的公差研究结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号