首页> 外文会议>MIPPR 2007: Pattern Recognition and Computer Vision; Proceedings of SPIE-The International Society for Optical Engineering; vol.6788 >Adaptive neural network nonlinear control for BTT missile based on the differential geometry method
【24h】

Adaptive neural network nonlinear control for BTT missile based on the differential geometry method

机译:基于微分几何方法的BTT导弹自适应神经网络非线性控制

获取原文
获取原文并翻译 | 示例

摘要

A new nonlinear control strategy incorporated the differential geometry method with adaptive neural networks is presented for the nonlinear coupling system of Bank-to-Turn missile in reentry phase. The basic control law is designed using the differential geometry feedback linearization method, and the online learning neural networks are used to compensate the system errors due to aerodynamic parameter errors and external disturbance in view of the arbitrary nonlinear mapping and rapid online learning ability for multi-layer neural networks. The online weights and thresholds tuning rules are deduced according to the tracking error performance functions by Levenberg-Marquardt algorithm, which will make the learning process faster and more stable. The six degree of freedom simulation results show that the attitude angles can track the desired trajectory precisely. It means that the proposed strategy effectively enhance the stability, the tracking performance and the robustness of the control system.
机译:提出了一种将微分几何方法与自适应神经网络相结合的非线性控制策略,用于返程导弹转弯导弹的非线性耦合系统。使用微分几何反馈线性化方法设计基本控制律,并考虑到任意非线性映射和快速的在线学习能力,使用在线学习神经网络来补偿由于空气动力学参数误差和外部干扰引起的系统误差。层神经网络。通过Levenberg-Marquardt算法根据跟踪误差性能函数推导在线权重和阈值调整规则,使学习过程更快,更稳定。六自由度仿真结果表明,姿态角可以精确地跟踪所需的轨迹。这意味着所提出的策略有效地提高了控制系统的稳定性,跟踪性能和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号