首页> 外文会议>International Silicon-Germanium Technology and Device Meeting >Epitaxial Growth of Highly Strained SiGe Layers Directly on Si(001) Substrate
【24h】

Epitaxial Growth of Highly Strained SiGe Layers Directly on Si(001) Substrate

机译:直接在Si(001)衬底上高度应变SiGe层的外延生长

获取原文

摘要

It has been observed that at lower growth temperatures, epitaxial layers of Si1-xGex on Si(001) can be grown beyond the predicted critical thickness[1] for plastic relaxation [2]. These layers are known as metastable, since if raised to a temperature higher than their growth temperature, relaxation will occur. A number of comprehensive studies have been published for Si1-xGex epilayers with a low Ge composition, including the recent work with a Ge content up to 52% [2]. However, no work has been carried out on higher Ge composition layers i.e. above 60% . Since the strain in the layer is proportional to its lattice mismatch with the Si substrate, layers with higher Ge composition will exhibit a higher degree of compressive strain. This higher strain ought to enhance a room-temperature two-dimensional hole gas (2DHG) mobility in a Si0.4Ge0.6 quantum well (QW) grown pseudomorphically on a Si(001) substrate. This property is very important for application of such materials in electronic devices like Field Effect Transistors (FETs) and others. It is also very important to maintain the SiGe QW thickness around or above 10 nm in order to minimize negative effect of interface scattering on 2DHG mobility. In this work, we demonstrate that highly strained epilayers of Si0.4Ge0.6 can be grown pseudomorphically on a Si (001) substrate with thicknesses up to ~25 nm, which is is significantly above the thickness usually accepted as being stable or even metastable. Epitaxial layers were grown in an industrial reduced pressure chemical vapour deposition (RP-CVD) system. Standard, commercial available disilane and germane precursors were used. The epilayer thicknesses were obtained by XTEM analysis and high resolution X-ray diffraction HR-XRD. The epilayer surface morphology was analyzed by atomic force microscopy (AFM) and defects observed in the relaxed epilayers were analyzed by combination of plan view transmission electron microscopy PV-TEM and AFM. We report that it wa- possible to grow up to 24nm of Si0.4Ge0.6 before strain relaxation occurred. For epilayers thinner than 24 nm a surface roughness comparable to that of the Si substrate was observed, for example the 21 nm layer showed an RMS roughness of 0.08 nm (Figure 2). These thin layers produced rocking curves with clearly defined thickness fringes (Figure 1) that indicate no relaxation by defect formation. Above 24 nm, the layers showed a high surface roughness with the characteristic crosshatch pattern (Figure 3). This indicates non-uniform elastic strain fields from dislocations [3] , suggesting strain relaxation. Above 24 nm the thickness fringes seen in the rocking curves rapidly reduced in intensity compared to the thinner layers, which is also indicative of strain relaxation. A thickness of 24 nm of strained Si0.4Ge0.6 on Si (001) is higher than any attempts at growth of this strained alloy directly on Si reported previously. The results obtained show very high potential for application of highly strained Si0.4Ge0.6/Si(001) structures in a variety of electronic and photonic Si based devices. Detailed characterisation will be presented along with growth details. [1]R. People and J. C. Bean,'Calculation of critical layer thickness versus lattice mismatch for GexSi1?x/Si strained-layer heterostructures', Appl. Phys. Lett., vol. 47, no. 3, p. 322, 1985. [2] J. M. Hartmann, A. Abbadie, and S. Favier,'Critical thickness for plastic relaxation of SiGe on Si(001) revisited', Journal of Applied Physics, vol. 110, no. 8, p. 083529, 2011. [3] H. Chen, Y. Li, C. Peng, H. Liu, Y. Liu, Q. Huang, J. Zhou, and Q.-K. Xue,'Crosshatching on a SiGe film grown on a Si(001) substrate studied by Raman mapping and atomic force microscopy',Physical Review B, vol. 65, no. 23, May 2002.
机译:已经观察到,在较低的生长温度下,Si1-XGEx上的外延层可以在塑料松弛的预测临界厚度[1]之外生长在预测的临界厚度[2]之外。这些层被称为稳定性,因为如果升高到高于其生长温度的温度,则会发生松弛。已经为具有低GE组合物的Si1-XGex癫痫发表了许多综合研究,包括最近的GE含量的工作高达52%[2]。然而,在高于GE组合物层中没有工作,即60%以上。由于层中的应变与其与Si衬底的晶格错配成比例,因此具有较高Ge组合物的层将表现出更高程度的压缩菌株。这种较高的应变应该在Si0.4ge0.6量子阱(QW)上以Si(001)衬底上的伪组合,增强室温二维空气(2DHG)迁移率。此属性对于在电子设备中应用此类材料非常重要,例如场效应晶体管(FET)等。将SiGe QW厚度或高于10nm保持在10nm以上,以最小化2DHG移动性散射的负效应也是非常重要的。在这项工作中,我们证明了Si0.4Ge0.6的高度应变性外延分子可以在厚度上伪装于厚度高达约25nm的Si(001)衬底上,这显着高于通常接受稳定甚至稳定的厚度。外延层在工业减压化学气相沉积(RP-CVD)系统中生长。使用标准,可商业的硅烷硅烷和锗烷前体。通过XTEM分析和高分辨率X射线衍射HR-XRD获得外膜厚度。通过原子力显微镜(AFM)分析外膜表面形态,并通过平面图透射电子显微镜PV-TEM和AFM的组合分析在松弛的外膜中观察到的缺陷。我们认为它可以在应变松弛发生之前长达24nm的Si0.4ge0.6。对于薄于24nm的脱垂剂,观察到与Si衬底的表面粗糙度相当,例如21nm层显示RMS粗糙度为0.08nm(图2)。这些薄层产生摇摆曲线,具有明确定义的厚度条纹(图1),表示通过缺陷形成无弛豫。在24 nm以上,层显示出高表面粗糙度,具有特征十字分布图案(图3)。这表明来自脱位的非均匀弹性应变场[3],表明应变松弛。与较薄的层相比,在24 nm以上,摇摆曲线中看到的厚度条纹迅速降低,这也表明应变松弛。 Si(001)上的应变Si0.4g0.4的厚度为24nm。获得的结果显示了在各种电子和光子Si的装置中施加高度应变的Si0.4〜Si(001)结构的高潜力。详细表征将与生长细节一起呈现。 [1] r。人和J.C. Bean,'临界层厚度与Gexsi1?X / Si紧张层异质结构的拇指不匹配的计算。物理。 Lett。,Vol。 47,没有。 3,p。 322,1985。[2] J. M. Hartmann,A. Abbadie和S. Favier,Si(001)SiGe的塑性松弛临界厚度已重新审视',应用物理学,Vol。 110,没有。 8,p。 083529,2011. [3] H. Chen,Y.Li,C.Peng,H.Liu,Y.刘,Q.Huang,J.周和Q. -K。薛,'在Si(001)基底上生长的SiGe膜的交叉色谱,由拉曼测绘和原子力显微镜进行物理评测B,Vol。 65,不。 23,2002年5月。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号