首页> 外文会议>Chemical-Mechanical Planarization for ULSI Multilevel Interconnection Conference >Numerical investigation of the effect of pad groove in chemical mechanical planarization process
【24h】

Numerical investigation of the effect of pad groove in chemical mechanical planarization process

机译:垫槽在化学机械平面化过程中的数值研究

获取原文

摘要

Chemical mechanical planarization (CMP) has the capability to achieve adequate local and global planarization for future submicrometer VLSI requirements [1]. It is known that the presence of both abrasive particles and chemicals is necessary to produce a desirable polish rate [2]. Material removal from the wafer surface is contributed by the combined action of abrasive particles and the chemical reagents in addition to the asperity contact. The fundamental physical and chemical mechanisms of CMP are not well understood. Modeling efforts are mostly attributed to Preston's equation while is from simple to more complex treatment of pad asperity, deformation, and bending [2]. Until recently, the modeling of the effects of the slurry flow and chemical reactions are included and presented in few published works [3-6]. The importance role of particles during the material removal process is treated more empirically in the most modeling efforts. The actual physical contributions for the abrasive particles in CMP material removal mechanism is not observed experimentally, and very limited in computational works. In the previous investigation [7], the role of abrasive particle for material removal is numerically observed and studied for CMP process. Two different pad geometries with groove are numerically investigated for particulate flow in wafer-pad slurry film. These two cases conclude that the particle impacts are rely on the particle resided on the wafer surface. These particles nearly follow the flow, and no particle impact has found even in the pad-groove region. Although a small turbulence is found in the slurry flow, the importance of turbulence effect on the particles is not fully studied in this investigation. In addition, the multiphase flow computations show the particle weight fraction is nearly uniform in the slurry flow. A further investigation [8] to study the role of turbulence effect on particle transportation and on material removal in CMP process is numerically observed and studied. Two-dimensional Newtonian turbulent viscous slurry flow in a groove and bumped wafer-pad passage is numerically computed in this investigation. The abrasive particles are modeled using Euler-Lagrange dispersed model with the inclusion of particle turbulent dispersion model to investigate the turbulence effect on the particle movement. The results show these particles can impact the wafer surface under the effect of turbulence on particle transportation, and the impact momentum can contribute the planarization process. The shear stresses distribution on the wafer surface shows the rough pad do increase the gradient of shear stresses and the shallow channel do receive a larger shear stress level in the planarization process. The groove can increase the impact frequency of particle with diameter less than 0.1 μm. This investigation indicates how the groove and rough pad surface can mechanically contribute the planarization process. In the present investigation, the role of groove effect on the particle transportation and on the material removal in CMP process is conducted numerically for a wafer-pad-groove and a wafer-pad geometries as shown in Figure 1 and 2. The role of turbulence effect on the particle transportation is numerically simulated in the above geometries to study the role of groove effect on the material removal in CMP process. The simulation principle for abrasive particle trajectories, impact, and erosion in viscous fluids is developed based on Hamed et.al.[9]. Two-dimensional Newtonian turbulent viscous slurry flow in the bumped wafer-pad passage with and without groove is studied in the present investigation. The abrasive particles are modeled using Euler-Lagrange dispersed model with the inclusion of particle turbulent dispersion model to investigate the particle movement in these two geometries. Simulations are modeled based on actual experimental observation with averaged pad-wafer channel depth of 50 μm in sine-waves bum
机译:化学机械平面化(CMP)具有可实现适当的局部和全局平面化的能力,以便对未来的潜力计VLSI要求进行适当的本地和全局平面化[1]。已知磨料颗粒和化学物质的存在是产生理想的抛光速率[2]。除了粗糙接触之外,从晶片表面去除从晶片表面的磨料颗粒和化学试剂的组合作用。 CMP的基本物理和化学机制尚不清楚。建模努力主要归因于普雷斯顿的等式,同时从简单到更复杂的垫粗糙,变形和弯曲[2]。直到最近,含有浆料流动和化学反应的效果的建模,并呈现在很少有公开的作品[3-6]中。粒子在材料去除过程中的重要性作用更为经验在最多的型号努力中。在实验上未观察到CMP材料去除机制中磨料颗粒的实际物理贡献,并且在计算工作中非常有限。在先前的研究[7]中,对MCP工艺进行了数量观察并研究了用于材料去除的磨粒的作用。在晶片垫浆料膜中的颗粒流动进行数值研究了两种不同的垫几何形状。这两种情况得出结论,粒子冲击依赖于驻留在晶片表面上的颗粒。这些颗粒几乎跟随流程,即使在焊盘区域中也没有发现颗粒冲击。虽然在浆料流动中发现了小湍流,但在这次调查中没有完全研究湍流对颗粒对颗粒的重要性。另外,多相流量计算显示浆料流动颗粒重量级别几乎均匀。进一步的研究[8]研究湍流效应对颗粒运输的作用和在CMP工艺中的材料去除的作用进行了数值观察和研究。在凹槽中的二维牛顿湍流粘性浆料流动和凸起的晶片垫通道在该研究中进行了数量计算。使用euler-拉长分散模型模拟磨料颗粒,该模型包含颗粒湍流分散模型来研究颗粒运动的湍流效应。结果显示这些颗粒可以在湍流对颗粒运输的影响下影响晶片表面,并且影响动量可以有助于平坦化过程。晶片表面上的剪切应力分布表示粗垫确实增加剪切应力的梯度,并且浅通道确实在平坦化过程中接收更大的剪切应力水平。凹槽可以增加直径小于0.1μm的颗粒的冲击频率。该研究表明凹槽和粗糙垫表面如何机械地有助于平坦化过程。在本研究中,沟槽效应对颗粒运输和材料去除的作用,用于晶片垫槽和晶片垫几何形状进行数值进行,如图1和2.湍流的作用对颗粒运输的影响在上述几何形状中进行了数值模拟,以研究沟槽效应对CMP工艺中的材料去除的作用。粘性颗粒轨迹,冲击和粘性流体侵蚀的模拟原理是基于Hame et.al开发的。[9]。在本研究中研究了凸起的晶片垫通道中的二维牛顿湍流粘性浆料流动,并在本研究中进行了凹槽。使用euler-拉长分散模型建模磨料颗粒,其中包含颗粒湍流分散模型来研究这两个几何形状中的颗粒运动。模拟基于实际实验观察,平均焊盘晶片频道深度为50μm的正弦波Bum

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号