首页> 外文会议>IEEE International Test Conference in Asia >RRAM-Based Neuromorphic Hardware Reliability Improvement by Self-Healing and Error Correction
【24h】

RRAM-Based Neuromorphic Hardware Reliability Improvement by Self-Healing and Error Correction

机译:基于RRAM的神经形态硬件可靠性通过自我愈合和纠错改进

获取原文

摘要

Neural network (NN) has been considered as an important factor for the success of many AI applications. As the von Neumann architecture is inefficient for NN computation, researchers have been investigating new semiconductor devices and architectures for neuromorphic computing. The crossbar RRAM, which is an emerging non-volatile memory composed of memristor devices, can be used to accelerate or emulate the NN computation. However, the memristor device defects exposed during manufacturing or field use may cause performance degradation in the NN, causing reliability issues to the neuromorphic hardware. In this paper, we consider two existing fault models for the 1T1R RRAM cell, i.e., the stuck-at fault and transistor stuck-on fault. Evaluation of their influence to the NN shows that for about 10% faulty cells in the memristor array, the accuracy for the MLP model degrades about 10%, and that for the LeNet 300-100 and LeNet 5 degrades by more than 65%. Therefore, we propose a self-healing and an error correction approach to reduce the accuracy degradation, and improve the reliability (lifetime) of the neuromorphic hardware. Our simulation results show that if we limit the accuracy degradation to within 5%, then the proposed error correction approach for the MLP model will be able to tolerate up to 40% faulty cells, and even up to 60% faulty cells for LeNet 300-100 and LetNet 5 models. Also, the error correction method can extend the lifetime of the neuromorphic hardware by 5% or more.
机译:神经网络(NN)已经被认为是许多AI应用取得成功的一个重要因素。正如冯·诺依曼架构是低效NN计算,研究人员一直在研究新的半导体器件和架构的神经形态计算。横杆RRAM,这是忆阻器器件构成的一个新兴的非易失性存储器,可以用来加速或模拟NN计算。然而,在制造或现场使用过程中暴露忆阻器装置中的缺陷可能导致在NN的性能降低,导致可靠性问题的神经形态硬件。在本文中,我们考虑了1T1R RRAM单元,即现有的两个故障模型,在固定故障和晶体管卡开故障。的其影响到NN显示的评价,对于约10 %故障单元忆阻器阵列中,所述准确度为大约10 %的MLP模型降解,并且,对于LeNet 300-100和LeNet 5个劣化超过65 %。因此,我们提出了一种自我修复和降低精度的劣化,并且提高了神经形态硬件的可靠性(寿命)的错误校正方法。我们的模拟结果表明,如果我们限制的精度降低到5 %以内,对于MLP模型,则提出纠错方法将能够容忍高达40 %故障电池,甚至高达60个%故障细胞LeNet 300-100和LetNet 5款车型。另外,误差校正方法可以通过5 %以上延伸的神经形态硬件的寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号