首页> 外文会议>International Conference on Ion Implantation Technology >H+ implantation profile formation in m:Cz and Fz silicon
【24h】

H+ implantation profile formation in m:Cz and Fz silicon

机译:m:Cz和Fz硅中H + 注入轮廓的形成

获取原文

摘要

Implanting hydrogen ions (H) into silicon creates defects that can act as donors. The microscopic structure of these defects is not entirely clear. There is a difference in the resulting doping profiles if the silicon is produced by the float zone (Fz) process or the magnetic Czochralski (m:Cz) process. Silicon produced by the m:Cz process has higher concentrations of oxygen and carbon than silicon produced by the Fz process. The presence of the oxygen and carbon affects the formation of defects and thereby the doping profile. We implanted high resistivity p-type m:Cz and Fz wafers with protons. Due to the n-type doping from the H implantation, a pn-junction was generated in the sample. Simulations indicate that the H implantation depth is 148 µm. Spreading Resistance Profiling (SRP) measurements of as-implanted and not annealed samples show a donor peak at 148 µm in the Fz samples but the peak is at about 160 µm depth in m:Cz samples. After a low temperature anneal of the m:Cz samples at temperatures between 150 and 250 °C for at least 30 minutes, the expected end of range (EOR) donor peak (at about 148 µm) appears. For higher annealing temperatures, the hydrogen related donor complexes (HTD's) become activated and the EOR peak becomes dominant in the implantation profile. In an SRP study we show the evolution of the doping profile of hydrogen implanted m:Cz and Fz wafers as a function of the annealing temperature. To monitor the depth of the formed pn-junction and the effective local diffusion length in the proton radiation damaged region, Electron Beam Induced Current (EBIC) measurements were performed.
机译:将氢离子(H)注入到硅中会产生可以充当施主的缺陷。这些缺陷的微观结构尚不完全清楚。如果通过浮区(Fz)工艺或磁性切克劳斯基(m:Cz)工艺生产硅,则最终的掺杂轮廓会有所不同。通过m:Cz工艺生产的硅比通过Fz工艺生产的硅具有更高的氧和碳浓度。氧和碳的存在影响缺陷的形成,从而影响掺杂分布。我们用质子植入了高电阻率的p型m:Cz和Fz晶圆。由于H注入产生的n型掺杂,在样品中产生了pn结。仿真表明,H注入深度为148 µm。植入样品和未退火样品的扩展电阻分析(SRP)测量显示,Fz样品的供体峰为148 µm,而m:Cz样品的峰约为160 µm。 m:Cz样品在150至250°C的温度下进行低温退火至少30分钟后,出现预期的范围结束(EOR)供体峰(约148 µm)。对于更高的退火温度,氢相关的供体配合物(HTD's)被激活,而EOR峰在注入过程中占主导地位。在SRP研究中,我们显示了氢注入的m:Cz和Fz晶片的掺杂分布随退火温度的变化。为了监测形成的pn结的深度和质子辐射损伤区域中的有效局部扩散长度,进行了电子束感应电流(EBIC)测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号