首页> 外文会议>Indium Phosphide and Related Materials, 1998 International Conference on >DLTS and current transport studies of metal/InGaAs Schottky contacts
【24h】

DLTS and current transport studies of metal/InGaAs Schottky contacts

机译:DLTS和金属/ InGaAs肖特基接触的电流传输研究

获取原文

摘要

Schottky barrier enhancement by low temperature (LT=77 K) deposition has successfully achieved. The barrier height /spl phi//sub B/ of 0.64 eV was obtained at LT, comparing the same contact formed at room temperature (RT) with a /spl phi//sub B/ of 0.30 eV. Current transport mechanisms were studied on Schottky contacts formed at LT and RT. Based on theoretic fitting of the current-voltage (I-V) plots at different temperatures, it was found that the recombination current in the depletion region may be responsible for the I-V characteristics deviation from the ideal thermionic emission (EM) model. The recombination current can be caused by a deep defect level in InGaAs. This effect became more significant on diodes with lower barrier height, under lower bias, and at low measurement temperature. The generation current, however, has only a small effect on the reverse biased current. A deep defect level located at 0.321 eV below the bottom of the conduction band in InGaAs, identified by the deep level transient spectroscopy (DLTS) measurement, can act as the recombination-generation center. The generation lifetime of this center may be much longer than its recombination lifetime, so that it may affect the forward bias I-V characteristics more severely.
机译:通过低温沉积(LT = 77 K)增强了肖特基势垒。将室温(RT)下形成的相同触点与0.30 eV的/ spl phi // sub B /进行比较,在LT处获得的势垒高度/ spl phi // sub B /为0.64 eV。研究了在LT和RT形成的肖特基接触上的电流传输机制。基于不同温度下电流-电压(I-V)曲线的理论拟合,发现耗尽区的重组电流可能是I-V特性偏离理想热电子发射(EM)模型的原因。复合电流可能是由InGaAs中的深缺陷水平引起的。对于具有较低势垒高度,较低偏压和较低测量温度的二极管,此效应变得尤为明显。但是,发电电流对反向偏置电流的影响很小。通过深能级瞬态光谱法(DLTS)测量确定的InGaAs导带底部以下0.321 eV的深能级缺陷可以充当重组产生中心。该中心的产生寿命可能比其复合寿命长得多,因此它可能会更严重地影响正向偏压I-V特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号