首页> 外文会议>Medical computing vision and bayesian and graphical models for biomedical imaging >Automatic Segmentation of Abdominal MRI Using Selective Sampling and Random Walker
【24h】

Automatic Segmentation of Abdominal MRI Using Selective Sampling and Random Walker

机译:使用选择性采样和随机Walker的腹部MRI自动分割

获取原文
获取原文并翻译 | 示例

摘要

MRI segmentation is a challenging task due to low anatomical contrast and large inter-patient variation. We propose a feature-driven automatic segmentation framework, combining voxel-wise classification with a Random-Walker (RW) based spatial regularization. Typically, such steps are treated independently, i.e. classification outcome is maximized without taking into account the regularization to follow. Herein we present a method for selective sampling of training patches, in view of the posterior spatial regularization. This aims to concentrate training samples near desired anatomical boundaries, around which the gain from a subsequent RW regularization will potentially be minimal. This trades off a lower classification accuracy for a higher joint segmentation performance. We compare our proposed sampling strategy to conventional uniform sampling on 20 full-body MR T1 scans from the VISCERAL dataset, both with RW and Markov Random Fields regularizations, showing Dice improvements of up to 12 x with the proposed approach.
机译:由于解剖学对比度低和患者间差异大,MRI分割是一项艰巨的任务。我们提出了一种功能驱动的自动分割框架,将基于体素的分类与基于Random-Walker(RW)的空间正则化相结合。通常,这样的步骤是独立处理的,即在不考虑要遵循的正则化的情况下使分类结果最大化。在本文中,鉴于后空间正则化,我们提出了一种用于训练样本的选择性采样的方法。这旨在将训练样本集中在所需的解剖学边界附近,在该边界附近,后续RW正则化的增益可能会最小。这是以较低的分类精度为代价的,但要获得较高的关节分割性能。我们将拟议的采样策略与VISCERAL数据集的20个全身MR T1扫描的常规均匀采样进行了比较,并进行了RW和Markov随机场正则化,结果表明,采用拟议的方法可使Dice改进高达12倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号