首页> 外文OA文献 >Automatic liver segmentation on computed tomography using random walkers for treatment planning
【2h】

Automatic liver segmentation on computed tomography using random walkers for treatment planning

机译:使用随机步行器在计算机断层扫描上自动进行肝分割以制定治疗计划

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Segmentation of the liver from Computed Tomography (CT) volumes plays an important role during the choice of treatment strategies for liver diseases. Despite lots of attention, liver segmentation remains a challenging task due to the lack of visible edges on most boundaries of the liver coupled with high variability of both intensity patterns and anatomical appearances with all these difficulties becoming more prominent in pathological livers. To achieve a more accurate segmentation, a random walker based framework is proposed that can segment contrast-enhanced livers CT images with great accuracy and speed. Based on the location of the right lung lobe, the liver dome is automatically detected thus eliminating the need for manual initialization. The computational requirements are further minimized utilizing rib-caged area segmentation, the liver is then extracted by utilizing random walker method. The proposed method was able to achieve one of the highest accuracies reported in the literature against a mixed healthy and pathological liver dataset compared to other segmentation methods with an overlap error of 4.47 % and dice similarity coefficient of 0.94 while it showed exceptional accuracy on segmenting the pathological livers with an overlap error of 5.95 % and dice similarity coefficient of 0.91.
机译:在选择肝脏疾病的治疗策略期间,根据计算机断层扫描(CT)体积对肝脏进行分割起着重要作用。尽管引起了广泛关注,但由于肝脏大部分边界上缺乏可见的边缘以及强度模式和解剖学表现的高度可变性,肝脏分割仍然是一项艰巨的任务,而所有这些困难在病理性肝脏中变得更加突出。为了实现更准确的分割,提出了一种基于随机助步器的框架,该框架可以以较高的准确性和速度分割对比度增强的肝脏CT图像。根据右肺叶的位置,可自动检测肝穹顶,从而无需手动初始化。利用肋骨笼状区域分割进一步降低了计算要求,然后利用随机沃克方法提取了肝脏。与其他分割方法相比,提出的方法与其他分割方法相比,对健康和病理混合肝脏数据集的准确率最高,重叠误差为4.47%,切模相似系数为0.94。病理肝脏的重叠误差为5.95%,骰子相似系数为0.91。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号