首页> 外文会议>Low-dimensional functional materials >Simulation of Random Telegraph Noise in Nanometer nMOSFET Induced by Interface and Oxide Trapped Charge
【24h】

Simulation of Random Telegraph Noise in Nanometer nMOSFET Induced by Interface and Oxide Trapped Charge

机译:界面和氧化物陷阱电荷在纳米nMOSFET中产生的随机电报噪声的仿真

获取原文
获取原文并翻译 | 示例

摘要

In this work, the influence of a single positive elementary charge trapped either in the oxide or at the oxide-semiconductor interface on Random Telegraph Noise (RTN) has been investigated and the relative RTN amplitude ΔI_D//I_d in nanometer MOSFET was simulated. Since our investigations were focused on the RTN amplitude, we considered only the steady-state and did not investigate the dynamics of charging/discharging the trap. For considering the impact of a single charge trapped in the oxide or at the interface, we assumed that this single positive charge was homogeneously distributed across a certain gate oxide volume or across a certain interface area. By varying the length of the charged region, containing a homogeneously distributed single charge, from 54 nm down to 0.8 nm, it is found that the RTN amplitude increases for decreasing length and reaches saturation for lengths below 20 nm. For identical extensions and positions in the gate length direction, a trapped interface charge generates a RTN amplitude up to two times larger compared to a charge trapped in the oxide. For both oxide and interface charges the maximal RTN amplitude is observed for a trap located right above the center of the channel. Results show that the main contribution to the RTN amplitude comes from the variation of the carrier density in the channel due to the trapped charge.
机译:在这项工作中,研究了在氧化物中或在氧化物-半导体界面处捕获的单个正基本电荷对随机电报噪声(RTN)的影响,并模拟了纳米MOSFET中的相对RTN幅度ΔI_D// I_d。由于我们的研究集中在RTN振幅上,因此我们仅考虑稳态,而不研究陷阱充放电的动力学。为了考虑在氧化物中或界面处捕获的单个电荷的影响,我们假设该单个正电荷均匀分布在某个栅极氧化物体积或某个界面区域上。通过将包含均匀分布的单电荷的带电区域的长度从54 nm减小到0.8 nm,可以发现RTN幅度随着长度的减小而增加,而对于20 nm以下的长度则达到饱和。对于在栅极长度方向上相同的延伸和位置,被俘获的界面电荷产生的RTN幅度是氧化物中俘获的电荷的两倍。对于氧化物和界面电荷,对于位于通道中心正上方的陷阱,可以观察到最大RTN振幅。结果表明,对RTN幅度的主要贡献来自于由于捕获的电荷而导致的通道中载流子密度的变化。

著录项

  • 来源
  • 会议地点 Tashkent(UZ)
  • 作者单位

    Department of Physics, Urganch State University, H. Olimjon Street, 740013 Urganch, Uzbekistan;

    Department of Solid-State Electronics, Institute of Micro- and Nanotechnologies, Ilmenau University of Technology, Ilmenau, Germany;

    Department of Solid-State Electronics, Institute of Micro- and Nanotechnologies, Ilmenau University of Technology, Ilmenau, Germany;

    Department of Physics, Urganch State University, H. Olimjon Street, 740013 Urganch, Uzbekistan;

    Department of Physics, Urganch State University, H. Olimjon Street, 740013 Urganch, Uzbekistan;

    Department of Solid-State Electronics, Institute of Micro- and Nanotechnologies, Ilmenau University of Technology, Ilmenau, Germany;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号