首页> 外文会议>NATO Advanced Research Workshop on Recent Trends in Energy Security with Special Emphasis on Low-Dimensional Functional Materials >Chapter 20 Simulation of Random Telegraph Noise in Nanometer nMOSFET Induced by Interface and Oxide Trapped Charge
【24h】

Chapter 20 Simulation of Random Telegraph Noise in Nanometer nMOSFET Induced by Interface and Oxide Trapped Charge

机译:第20章互联网捕获电荷诱导纳米NMOSFET随机电报噪声的模拟

获取原文

摘要

In this work, the in?uence of a single positive elementary charge trapped either in the oxide or at the oxide-semiconductor interface on Random Telegraph Noise (RTN) has been investigated and the relative RTN amplitude Δ I_D / I_D in nanometer MOSFET was simulated. Since our investigations were focused on the RTN amplitude, we considered only the steady-state and did not investigate the dynamics of charging/discharging the trap. For considering the impact of a single charge trapped in the oxide or at the interface, we assumed that this single positive charge was homogeneously distributed across a certain gate oxide volume or across a certain interface area. By varying the length of the charged region, containing a homogeneously distributed single charge, from 54 nm down to 0.8 nm, it is found that the RTN amplitude increases for decreasing length and reaches saturation for lengths below 20 nm. For identical extensions and positions in the gate length direction, a trapped interface charge generates a RTN amplitude up to two times larger compared to a charge trapped in the oxide. For both oxide and interface charges the maximal RTN amplitude is observed for a trap located right above the center of the channel. Results show that the main contribution to the RTN amplitude comes from the variation of the carrier density in the channel due to the trapped charge.
机译:在这项工作中,已经研究了在氧化物中或在随机电报噪声(RTN)上捕获的单个正基本电荷的单个正基本电荷的情况,并且模拟了纳米MOSFET中的相对RTN幅度ΔI_d/ i_d / i_d 。由于我们的调查专注于RTN幅度,因此我们仅考虑了稳态,并未研究充电/放电陷阱的动态。为了考虑捕获在氧化物或界面中的单个电荷的冲击,我们假设该单个正电荷均匀地分布在某个栅极氧化物体积或跨越某个接口区域。通过改变含有均匀分布的单电荷的带电区域的长度,从54nm降至0.8nm,发现RTN幅度增加以降低长度,并且达到饱和度以低于20nm的长度。对于栅极长度方向上的相同延伸和位置,与捕获在氧化物中的电荷相比,被困接口电荷产生高达两倍的RTN幅度。对于氧化物和界面电荷,对于位于通道的中心右侧的陷阱,观察到最大RTN幅度。结果表明,由于捕获的电荷,RTN幅度对RTN幅度的主要贡献来自通道中的载波密度的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号