首页> 外文会议>International symposium on distributed computing and artificial intelligence >Complications Detection in Treatment for Bacterial Endocarditis
【24h】

Complications Detection in Treatment for Bacterial Endocarditis

机译:细菌性心内膜炎的并发症检测

获取原文
获取原文并翻译 | 示例

摘要

This study proposes the use of decision trees to detect possible complications in a critical disease called endocarditis. The endocarditis illness could produce heart failure, stroke, kidney failure, emboli, immunological disorders and death. The aim is to obtained a tree decision classifier based on the symptoms (attributes) of patients (the data instances) observed by doctors to predict the possible complications that can occur when a patient is in treatment of bacterial endocarditis and thus, help doctors to make an early diagnose so that they can treat more effectively the infection and aid to a patient faster recovery. The results obtained using a real data set, show that with the information extracted form each case in an early stage of the development of the patient a quite accurate idea of the complications that can arise can be extracted.
机译:这项研究建议使用决策树来检测一种称为心内膜炎的严重疾病的可能并发症。心内膜炎疾病可导致心力衰竭,中风,肾衰竭,栓子,免疫学疾病和死亡。目的是根据医生观察到的患者(数据实例)的症状(属性)获得树决策分类器,以预测患者在治疗细菌性心内膜炎时可能发生的并发症,从而帮助医生做出决策。尽早诊断,以便他们可以更有效地治疗感染并帮助患者更快地康复。使用真实数据集获得的结果表明,在患者发展的早期阶段,利用从每种情况中提取的信息,可以提取出可能出现的并发症的相当准确的想法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号