【24h】

A New Probabilistic Neural Network for Fault Detection in MEMS

机译:用于MEMS故障检测的新概率神经网络

获取原文
获取原文并翻译 | 示例

摘要

Micro Electro Mechanical Systems will soon usher in a new technological renaissance. Learn about the state of the art, from inertial sensors to microfluidic devices. Over the last few years, considerable effort has gone into the study of the failure mechanisms and reliability of MEMS. Although still very incomplete, our knowledge of the reliability issues relevant to MEMS is growing. One of the major problems in MEMS production is fault detection. After fault diagnosis, hardware or software methods can be used to overcome it. Most of MEMS have nonlinear and complex models. So it is difficult or impossible to detect the faults by traditional methods, which are model-based. In this paper, we use Robust Heteroscedastic Probabilistic Neural Network, which is a high capability neural network for fault detection. Least Mean Square algorithm is used to readjust some weights in order to increase fault detection capability.
机译:微机电系统将很快迎来新的技术复兴。了解从惯性传感器到微流体设备的最新技术。在过去的几年中,已经投入了大量的精力来研究MEMS的失效机理和可靠性。尽管仍然很不完整,但是我们对与MEMS相关的可靠性问题的了解正在增长。 MEMS生产中的主要问题之一是故障检测。故障诊断后,可以使用硬件或软件方法来克服它。大多数MEMS具有非线性模型和复杂模型。因此,很难或不可能通过基于模型的传统方法来检测故障。在本文中,我们使用了鲁棒的异方差概率神经网络,这是一种用于故障检测的高性能神经网络。最小均方算法用于重新调整一些权重,以提高故障检测能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号