首页> 外文会议>International Workshop on Intelligent Systems and Applications;ISA 2009 >Wave Reproduction Simulation for Road Simulator with Iterative Learning Control Applied to Nonlinear Plant Model
【24h】

Wave Reproduction Simulation for Road Simulator with Iterative Learning Control Applied to Nonlinear Plant Model

机译:具有非线性学习模型的迭代学习控制道路模拟器波再现仿真

获取原文

摘要

This article applies iterative learning control (ILC) to road simulation test system and simulates the control system to reproduce a stochastic pavement profile. With uniform white noise as input, using actual measured input-output data and dynamic neural network, system nonlinear autoregressive moving average model (NARMA) was established. Regarding road simulator control mission as a perfect tracking problem in finite time interval, considering the pure time delay of system model, a P-type open loop iterative learning law was devised using output error and control parameters of learning law were determined with relative root mean square error (RMSE) of output error as iterative stop condition. By designed learning law and system NARMA model formulating road simulation ILC system, simulation went on. Simulation results prove that with different initial inputs, utilizing designed learning law, model output can approach target signal with expected precision and that designed iterative control system in this article is feasible.
机译:本文将迭代学习控制(ILC)应用于道路模拟测试系统,并模拟该控制系统以再现随机路面轮廓。以均匀的白噪声为输入,利用实际测得的输入输出数据和动态神经网络,建立了系统非线性自回归移动平均模型(NARMA)。考虑到有限时间间隔内道路模拟器的控制任务是一个完美的跟踪问题,考虑系统模型的纯时延,利用输出误差设计了一种P型开环迭代学习律,并用相对根均值确定了学习律的控制参数。输出误差的平方误差(RMSE)作为迭代停止条件。通过设计学习规律和系统NARMA模型制定道路仿真ILC系统,进行了仿真。仿真结果证明,在不同初始输入下,利用设计的学习规律,模型输出可以逼近预期的目标信号,本文设计的迭代控制系统是可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号