首页> 外文会议>International Conference on Robotics and Automation >Experimental Learning of a Lift-Maximizing Central Pattern Generator for a Flapping Robotic Wing
【24h】

Experimental Learning of a Lift-Maximizing Central Pattern Generator for a Flapping Robotic Wing

机译:拍击机翼最大升力中央模式发生器的实验学习

获取原文

摘要

In this work, we present an application of a policy gradient algorithm to a real-time robotic learning problem, where the goal is to maximize the average lift generation of a dynamically scaled robotic wing at a constant Reynolds number (Re). Compared to our previous work, the merit of this work is two-fold. First, a central pattern generator (CPG) model was used as the motion controller, which provided a smooth generation and transition of rhythmic wing motion patterns while the CPG was being updated by the policy gradient, thereby accelerating the sample generation and reducing the total learning time. Second, the kinematics included three degrees of freedom (stroke, deviation, pitching) and were also free of half-stroke symmetry constraint, together they yielded a larger kinematic space which later explored by the policy gradient to maximize the lift generation. The learned wing kinematics used the full range of stroke and deviation to maximize the lift generation, implying that the wing trajectories with larger disk area and lower frequencies were preferred for high lift generation at constant Re. Furthermore, the wing pitching amplitude converged to values between 45°-49° regardless of what the other parameters were. Notably, the learning agent was able to find two locally optimal wing motion patterns, which had distinct shapes of wing trajectory but generated similar cycle-averaged lift.
机译:在这项工作中,我们提出了一种策略梯度算法在实时机器人学习问题中的应用,目标是在恒定的雷诺数(Re)下最大化动态缩放的机器人机翼的平均升力生成。与我们以前的工作相比,这项工作的优点是双重的。首先,使用中央模式生成器(CPG)模型作为运动控制器,在通过策略梯度更新CPG时,它可以平滑地生成和过渡有节奏的机翼运动模式,从而加速了样本生成并减少了总学习量时间。其次,运动学包括三个自由度(行程,偏差,俯仰),并且没有半行程对称约束,它们一起产生了较大的运动空间,随后通过策略梯度对其进行了探索,以最大限度地提高升力。学到的机翼运动学使用了整个行程和偏差范围,以最大程度地提高升力,这表明具有较大圆盘面积和较低频率的机翼轨迹对于恒定Re时的高升力产生是优选的。此外,无论其他参数如何,机翼的俯仰幅度都收敛到45°-49°之间的值。值得注意的是,学习者能够找到两个局部最优的机翼运动模式,它们具有不同的机翼轨迹形状,但产生了类似的周期平均升力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号