首页> 外文学位 >Autonomous Generation and Control of Central Pattern Generator Networks for Modular Robot Locomotion
【24h】

Autonomous Generation and Control of Central Pattern Generator Networks for Modular Robot Locomotion

机译:模块化机器人运动的中央模式生成器网络的自主生成和控制

获取原文
获取原文并翻译 | 示例

摘要

Modular robots hold the promise of being a complete solution to many problems within science. Their adaptability within hardware and software can provide the right robot for each and every situation. Properly controlling the hardware with coordinated locomotion is challenging but essential for the modules to work together and perform the assigned tasks. This research study has developed a two tiered approach which can coordinate and control the locomotion of modular robots assembled into bio-inspired shapes. The lowest level of control is in the joint space whereby all joints need to perform the right actions at the right time to produce a collaborative effort that results in locomotion. To accomplish this the Central Pattern Generator (CPG) network concept is applied from spinal vertebrate locomotion control. Each joint within the robot contributes in a small way to produce a coordinated, collaborative motion utilizing the whole body in unison. On top of the CPG network is a controller derived from the brain's cerebellum control system to modulate the CPG network to perform specific tasks such as path following.;To accomplish the CPG-based coordinate locomotion, a toolkit for automatically generating the Central Pattern Generator equations is presented. Robot shapes created in XML are read and parsed to determine sub-structures of the robot which adhere to common and known locomotion patterns for the specific modular robot currently utilized. Locomotion is based upon coordinated whole-body motion which is necessary for low-powered modular robots, such as the Linkbot used in this research, to create locomotion. By parsing the structure, the number of optimizable control parameters is drastically reduced to aid in efficient simulation of motion parameters. A simulation-based Genetic Algorithm process is used to generate motions and optimize the parameters of motion. The reduction in control parameters for large structures is an order of magnitude from the theoretical maximum. From simulated results of various shapes constructed out of the modules, the parsing of the shape increases the robot's linear speed when compared to optimizing all variables of the CPG network. The CPG networks capabilities are validated with hardware versions of the robots.;Once the CPG network has been determined which effectively controls a particular shape of robot, the network can be modulated to produce specific locomotion capabilities. Coordination between the joints is created by the network to produce locomotion. The control scheme on top of the CPG network is necessary to create a robot that can move predictably and follow objective trajectories. Again the control system takes inspiration from biology to provide real-time control of the CPG network that is controlling the modular robot configurations. In this research the brain's cerebellum, which is in charge of modulating the walking characteristics of humans, is modeled to modulate the CPG network to create path-following robots. Waypoints are used to generate cubic spline paths for the robot; a camera is used to track the robot's heading in reference to the path; and the error in heading is passed into a fuzzy controller to convert the heading error into a turn signal that is applied to the robot's CPG network. The CPG network and controller are calculated online in real-time to follow the desired trajectories. Experiments have been completed within a simulation environment built specifically for the robots used. The robots are able to accurately track the various paths laid out irregardless of the complexity and length. Root Mean Square (RMS) error is calculated for each of the experiments and shows that the robots can maintain an error between five and twelve centimeters for paths that average eight meters in length. For the snake robot the robustness of the controller is checked by adjusting the friction between the robot and the ground. This controller is not affected by changes in friction which alter the motion characteristics of the CPG network.
机译:模块化机器人有望成为科学界许多问题的完整解决方案。它们在硬件和软件中的适应性可以为每种情况提供合适的机器人。用协调的运动来适当地控制硬件是具有挑战性的,但是对于模块协同工作和执行分配的任务来说是必不可少的。这项研究开发了一种两层方法,可以协调和控制组装成生物启发形状的模块化机器人的运动。最低程度的控制是在关节空间中,因此所有关节都需要在正确的时间执行正确的动作,以产生导致运动的协同努力。为此,从脊椎脊椎动物运动控制中应用了中央模式发生器(CPG)网络概念。机器人内的每个关节都以较小的方式做出贡献,从而利用整个身体协调一致地产生协调的协作运动。 CPG网络的顶部是一个控制器,它源自大脑的小脑控制系统,用于调制CPG网络以执行诸如路径跟踪之类的特定任务。为了完成基于CPG的坐标运动,这是一个用于自动生成中央模式生成器方程式的工具包被表达。读取并解析以XML创建的机器人形状,以确定机器人的子结构,这些子结构遵守当前使用的特定模块化机器人的常见和已知运动模式。运动基于协调的全身运动,这对于低功率模块化机器人(例如本研究中使用的Linkbot)创建运动是必需的。通过解析结构,可大大减少可优化控制参数的数量,以帮助有效地模拟运动参数。基于模拟的遗传算法过程用于生成运动并优化运动参数。大型结构的控制参数减少量是理论最大值的一个数量级。从模块外构造的各种形状的模拟结果来看,与优化CPG网络的所有变量相比,形状的解析提高了机器人的线性速度。 CPG网络功能已通过机器人的硬件版本进行了验证。一旦确定了可以有效控制特定形状机器人的CPG网络,就可以对其进行调制以产生特定的运动能力。关节之间的协调是由网络创建的,以产生运动。 CPG网络之上的控制方案对于创建可预测移动并遵循客观轨迹的机器人是必不可少的。控制系统再次从生物学中汲取灵感,以提供对正在控制模块化机器人配置的CPG网络的实时控制。在这项研究中,负责调节人类步行特征的大脑小脑被建模为调节CPG网络以创建跟随路径的机器人。航路点用于为机器人生成三次样条曲线路径。摄像机用于参照路径跟踪机器人的前进方向;航向误差将传递到模糊控制器,以将航向误差转换为转向信号,并将其应用于机器人的CPG网络。 CPG网络和控制器是实时在线计算的,以遵循所需的轨迹。实验是在专门为所使用的机器人构建的模拟环境中完成的。不管复杂度和长度如何,机器人都能够准确地跟踪所布置的各种路径。计算每个实验的均方根(RMS)误差,结果表明,对于平均长度为8米的路径,机器人可以将误差保持在5到12厘米之间。对于蛇形机器人,通过调整机器人与地面之间的摩擦力来检查控制器的坚固性。该控制器不受摩擦变化的影响,摩擦变化会改变CPG网络的运动特性。

著录项

  • 作者

    Gucwa, Kevin J.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Robotics.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号