首页> 外文会议>International Conference on Robotics and Automation >Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset
【24h】

Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset

机译:我们准备好进行自动无人机竞赛了吗? UZH-FPV无人机赛车数据集

获取原文

摘要

Despite impressive results in visual-inertial state estimation in recent years, high speed trajectories with six degree of freedom motion remain challenging for existing estimation algorithms. Aggressive trajectories feature large accelerations and rapid rotational motions, and when they pass close to objects in the environment, this induces large apparent motions in the vision sensors, all of which increase the difficulty in estimation. Existing benchmark datasets do not address these types of trajectories, instead focusing on slow speed or constrained trajectories, targeting other tasks such as inspection or driving. We introduce the UZH-FPV Drone Racing dataset, consisting of over 27 sequences, with more than 10 km of flight distance, captured on a first-person-view (FPV) racing quadrotor flown by an expert pilot. The dataset features camera images, inertial measurements, event-camera data, and precise ground truth poses. These sequences are faster and more challenging, in terms of apparent scene motion, than any existing dataset. Our goal is to enable advancement of the state of the art in aggressive motion estimation by providing a dataset that is beyond the capabilities of existing state estimation algorithms.
机译:尽管近年来在视觉惯性状态估计中取得了令人印象深刻的结果,但是具有六个自由度运动的高速轨迹对于现有的估计算法仍然具有挑战性。攻击性轨迹具有较大的加速度和快速的旋转运动,当它们经过环境中的物体时,会在视觉传感器中引起较大的表观运动,所有这些都增加了估计的难度。现有的基准数据集不解决这些类型的轨迹,而是专注于低速或约束轨迹,以其他任务为目标,例如检查或驾驶。我们介绍了UZH-FPV无人机赛车数据集,该数据集由27个序列组成,飞行距离超过10公里,由专业飞行员在第一人称视角(FPV)赛车四旋翼飞行器上捕获。该数据集具有相机图像,惯性测量,事件相机数据和精确的地面真实姿态。在视景运动方面,这些序列比任何现有数据集都更快,更具挑战性。我们的目标是通过提供超越现有状态估计算法能力的数据集,来实现先进的运动估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号