首页> 外文会议>International Conference on Robotics and Automation >Deep Local Trajectory Replanning and Control for Robot Navigation
【24h】

Deep Local Trajectory Replanning and Control for Robot Navigation

机译:机器人导航的深层局部轨迹重新规划和控制

获取原文

摘要

We present a navigation system that combines ideas from hierarchical planning and machine learning. The system uses a traditional global planner to compute optimal paths towards a goal, and a deep local trajectory planner and velocity controller to compute motion commands. The latter components of the system adjust the behavior of the robot through attention mechanisms such that it moves towards the goal, avoids obstacles, and respects the space of nearby pedestrians. Both the structure of the proposed deep models and the use of attention mechanisms make the system's execution interpretable. Our simulation experiments suggest that the proposed architecture outperforms baselines that try to map global plan information and sensor data directly to velocity commands. In comparison to a hand-designed traditional navigation system, the proposed approach showed more consistent performance.
机译:我们提出了一个导航系统,该系统结合了分层计划和机器学习的思想。该系统使用传统的全局规划器来计算通向目标的最佳路径,并使用深度局部轨迹规划器和速度控制器来计算运动命令。该系统的后一部分通过注意力机制调整机器人的行为,使其朝目标移动,避开障碍物并尊重附近行人的空间。提议的深层模型的结构和注意机制的使用都使系统的执行变得可解释。我们的仿真实验表明,所提出的体系结构优于试图将全局计划信息和传感器数据直接映射到速度命令的基线。与手工设计的传统导航系统相比,该方法显示出更一致的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号