首页> 外文会议>International Conference on Intelligent Transportation Systems >Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detection
【24h】

Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detection

机译:迈向安全无人驾驶:在神经网络中捕获不确定性以进行激光雷达3D车辆检测

获取原文

摘要

To assure that an autonomous car is driving safely on public roads, its object detection module should not only work correctly, but show its prediction confidence as well. Previous object detectors driven by deep learning do not explicitly model uncertainties in the neural network. We tackle with this problem by presenting practical methods to capture uncertainties in a 3D vehicle detector for Lidar point clouds. The proposed probabilistic detector represents reliable epistemic uncertainty and aleatoric uncertainty in classification and localization tasks. Experimental results show that the epistemic uncertainty is related to the detection accuracy, whereas the aleatoric uncertainty is influenced by vehicle distance and occlusion. The results also show that we can improve the detection performance by 1%-5% by modeling the aleatoric uncertainty.
机译:为了确保自动驾驶汽车在公共道路上安全行驶,其对象检测模块不仅应正常工作,而且还应显示其预测信心。深度学习驱动的先前的对象检测器未在神经网络中显式建模不确定性。我们通过提出实用的方法来捕获3D车辆激光雷达点云中的不确定性的方法来解决这个问题。提出的概率检测器在分类和定位任务中代表了可靠的认知不确定性和无意识不确定性。实验结果表明,认知不确定性与检测精度有关,而不确定性受车辆距离和遮挡影响。结果还表明,通过对偶数不确定性进行建模,我们可以将检测性能提高1%-5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号