首页> 外文期刊>IEEE Transactions on Intelligent Transportation Systems >Deep Neural Network Based Vehicle and Pedestrian Detection for Autonomous Driving: A Survey
【24h】

Deep Neural Network Based Vehicle and Pedestrian Detection for Autonomous Driving: A Survey

机译:基于深度神经网络的自主驾驶的车辆和行人检测:调查

获取原文
获取原文并翻译 | 示例

摘要

Vehicle and pedestrian detection is one of the critical tasks in autonomous driving. Since heterogeneous techniques have been proposed, the selection of a detection system with an appropriate balance among detection accuracy, speed and memory consumption for a specific task has become very challenging. To deal with this issue and to provide guidance for model selection, this paper analyzes several mainstream object detection architectures, including Faster R-CNN, R-FCN, and SSD, along with several typical feature extractors, such as ResNet50, ResNet101, MobileNet_V1, MobileNet_V2, Inception_V2 and Inception_ResNet_V2. By conducting extensive experiments using the KITTI benchmark, which is a commonly used street dataset, we demonstrate that Faster R-CNN ResNet50 obtains the best average precision (AP) (58%) for vehicle and pedestrian detection, with a speed of 8.6 FPS. Faster R-CNN Inception_V2 performs best for detecting cars and detecting pedestrians respectively (74.5% and 47.3%). ResNet101 consumes the highest memory (9907 MB) and has the largest number of parameters (64.42 millions), and Inception_ResNet_V2 is the slowest model (3.05 FPS). SSD MobileNet_V2 is the fastest model (70 FPS), and SSD MobileNet_V1 is the lightest model in terms of memory usage (875 MB), both of which are suitable for applications on mobile and embedded devices.
机译:车辆和行人检测是自主驾驶中的关键任务之一。由于已经提出了异构技术,因此在特定任务的检测精度,速度和存储器消耗中选择具有适当平衡的检测系统已经变得非常具有挑战性。要处理此问题并为模型选择提供指导,本文分析了多个主流对象检测架构,包括更快的R-CNN,R-FCN和SSD,以及几种典型特征提取器,如Resnet50,Resnet101,MobileNet_v1, MobileNet_v2,Inception_v2和Inception_resnet_v2。通过使用这是一个常用的街道数据集的基准基准进行广泛的实验,我们证明了更快的R-CNN Reset50获得了车辆和行人检测的最佳平均精度(AP)(58%),其速度为8.6FPS。更快的R-CNN Inception_v2最适合检测汽车和检测行人(74.5%和47.3%)。 RESET101消耗最高内存(9907 MB)并具有最大数量的参数(64.42百万),并且Inception_resnet_v2是最慢的模型(3.05 fps)。 SSD MobiLenet_v2是最快的模型(70 fps),SSD MobileNet_v1是内存使用率(875 MB)的最轻的模型,两者都适用于移动和嵌入式设备上的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号