【24h】

A Hybrid Artificial Potential Field:Genetic Algorithm Approach to Mobile Robot Path Planning in Dynamic Environments

机译:混合人工势场:动态环境中移动机器人路径规划的遗传算法

获取原文

摘要

In this paper, a hybrid Artificial Potential Field-Genetic Algorithm approach is developed and implemented for mobile robot path planning in dynamic environments. The hybrid approach first uses Grid Method where the mobile robot environment is represented by orderly numbered grids, each of which represents a location in the environment. Then, it applies Genetic Algorithm (GA), a global planner, to find an optimal path according to the current environment. The GA proposed here uses an evolutionary population initialization and genetic operators, which make the evolutionary process converge very efficiently. Finally, a new Artificial Potential Field method, a local planner, is applied to follow the path obtained by GA from one intermediate node to next intermediate node avoiding the obstacles. Experimental results clearly illustrate that the proposed hybrid approach works well on large scale dynamic environments.
机译:本文针对动态环境中的移动机器人路径规划,开发并实现了一种混合人工势场-遗传算法方法。混合方法首先使用网格方法,其中,移动机器人环境由有序编号的网格表示,每个网格代表环境中的位置。然后,它应用全局计划程序遗传算法(GA)来根据当前环境找到最佳路径。这里提出的遗传算法使用进化种群初始化和遗传算子,这使进化过程非常有效地收敛。最后,采用一种新的人工势场方法,即局部规划器,以遵循遗传算法获得的从一个中间节点到下一个中​​间节点的路径,从而避免了障碍。实验结果清楚地表明,提出的混合方法在大规模动态环境下效果很好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号