首页> 外文会议>Intelligent robots and computer vision XXIX: algorithms and techniques >Vehicle tracking data for calibrating microscopic traffic simulation models
【24h】

Vehicle tracking data for calibrating microscopic traffic simulation models

机译:车辆跟踪数据,用于校准微观交通模拟模型

获取原文
获取原文并翻译 | 示例

摘要

This paper applies object detection in a microscopic traffic model calibration process and analyses the outcome. To cover a large and versatile amount of real world data for calibration and validation processes this paper proposes semi automated data acquisition by video analysis. This work concentrates mainly on the aspects of a automatic annotation tool applied to create trajectories of traffic participants over space and time. The acquired data is analyzed with a view towards calibrating vehicle models, which navigate through a road's surface and interact with the environment. The applied vehicle tracking algorithms for automated data extraction provide many trajectories not applicable for model calibration. Therefore, we applied an additional automated processing step to filter out faulty trajectories. With this process chain, the trajectory data can be extracted from videos automatically in a quality sufficient for the model calibration of speeds, the lateral positioning and vehicle interactions in a mixed traffic environment.
机译:本文将目标检测应用到微观交通模型校准过程中,并对结果进行分析。为了涵盖用于校准和验证过程的大量通用数据,本文提出了通过视频分析的半自动数据采集。这项工作主要集中在自动注释工具的方面,该工具用于创建交通参与者在空间和时间上的轨迹。分析所获取的数据的目的在于校准车辆模型,该模型可在道路表面导航并与环境互动。用于自动数据提取的已应用车辆跟踪算法提供了许多不适用于模型校准的轨迹。因此,我们应用了一个额外的自动化处理步骤来过滤出错误的轨迹。通过该过程链,可以自动从视频中提取轨迹数据,其质量足以在混合交通环境中对速度,横向定位和车辆相互作用进行模型校准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号