【24h】

Constraints in Particle Swarm Optimization of Hidden Markov Models

机译:隐马尔可夫模型的粒子群优化约束

获取原文
获取原文并翻译 | 示例

摘要

This paper presents new application of Particle Swarm Optimization (PSO) algorithm for training Hidden Markov Models (HMMs). The problem of finding an optimal set of model parameters is numerical optimization problem constrained by stochastic character of HMM parameters. Constraint handling is carried out using three different ways and the results are compared to Baum-Welch algorithm (BW), commonly used for HMM training. The global searching PSO method is much less sensitive to local extremes and finds better solutions than the local BW algorithm, which often converges to local optima. The advantage of PSO approach was markedly evident, when longer training sequence was used.
机译:本文提出了粒子群优化(PSO)算法在训练隐马尔可夫模型(HMM)中的新应用。寻找最佳模型参数集的问题是受HMM参数随机性约束的数值优化问题。使用三种不同的方式执行约束处理,并将结果与​​通常用于HMM训练的Baum-Welch算法(BW)进行比较。全局搜索PSO方法对局部极限的敏感度要低得多,并且比通常会收敛于局部最优的局部BW算法可以找到更好的解决方案。当使用更长的训练序列时,PSO方法的优势非常明显。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号