首页> 外文OA文献 >ProbPFP: a multiple sequence alignment algorithm combining hidden Markov model optimized by particle swarm optimization with partition function
【2h】

ProbPFP: a multiple sequence alignment algorithm combining hidden Markov model optimized by particle swarm optimization with partition function

机译:probpfp:用分区函数通过粒子群优化优化的隐马尔可夫模型的多序列对齐算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Background During procedures for conducting multiple sequence alignment, that is so essential to use the substitution score of pairwise alignment. To compute adaptive scores for alignment, researchers usually use Hidden Markov Model or probabilistic consistency methods such as partition function. Recent studies show that optimizing the parameters for hidden Markov model, as well as integrating hidden Markov model with partition function can raise the accuracy of alignment. The combination of partition function and optimized HMM, which could further improve the alignment’s accuracy, however, was ignored by these researches. Results A novel algorithm for MSA called ProbPFP is presented in this paper. It intergrate optimized HMM by particle swarm with partition function. The algorithm of PSO was applied to optimize HMM’s parameters. After that, the posterior probability obtained by the HMM was combined with the one obtained by partition function, and thus to calculate an integrated substitution score for alignment. In order to evaluate the effectiveness of ProbPFP, we compared it with 13 outstanding or classic MSA methods. The results demonstrate that the alignments obtained by ProbPFP got the maximum mean TC scores and mean SP scores on these two benchmark datasets: SABmark and OXBench, and it got the second highest mean TC scores and mean SP scores on the benchmark dataset BAliBASE. ProbPFP is also compared with 4 other outstanding methods, by reconstructing the phylogenetic trees for six protein families extracted from the database TreeFam, based on the alignments obtained by these 5 methods. The result indicates that the reference trees are closer to the phylogenetic trees reconstructed from the alignments obtained by ProbPFP than the other methods. Conclusions We propose a new multiple sequence alignment method combining optimized HMM and partition function in this paper. The performance validates this method could make a great improvement of the alignment’s accuracy.
机译:在进行多个序列对齐的程序期间的抽象背景,这对于使用成对对齐的替换得分如此重要。为了计算对齐的自适应分数,研究人员通常使用隐藏的Markov模型或概率一致性方法,例如分区函数。最近的研究表明,优化隐藏马尔可夫模型的参数,以及与分区功能集成隐藏的马尔可夫模型可以提高对准的准确性。然而,通过这些研究忽略了分区功能和优化的HMM的组合,这可以进一步提高对准的准确性。结果本文提出了一种名为ProBPFP的MSA新颖算法。它通过粒子群与分区功能进行整理优化的HMM。应用PSO的算法来优化HMM的参数。之后,通过分配功能获得的HMM获得的后验概率与通过分区功能获得的概率,从而计算用于对准的集成替换得分。为了评估probfp的有效性,我们将其与13个优秀或经典的MSA方法进行比较。结果表明,通过probpfp获得的对齐得到了这两个基准数据集上的最大平均tc分数,平均sp分数:sabmark和oxbench,并且它得到了第二个最高的平均tc分数并在基准数据集巴利布里上的SP分数。 ProBPFP还与4个其他优异方法进行比较,通过重建从数据库TreeFam提取的六种蛋白质家族的系统发育树,基于通过这5种方法获得的对准。结果表明,参考树更靠近由ProbPFP获得的比对比其它方法更靠近的系统发育树。结论我们提出了一种新的多序列对准方法,在本文中结合了优化的HMM和分区功能。性能验证该方法可以提高对齐的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号