首页> 外文会议>IEEE International Conference on Robotics & Automation >Learning dexterous grasps that generalise to novel objects by combining hand and contact models
【24h】

Learning dexterous grasps that generalise to novel objects by combining hand and contact models

机译:通过结合手和接触模型学习灵巧的把握,将其概括为新颖的对象

获取原文

摘要

Generalising dexterous grasps to novel objects is an open problem. We show how to learn grasps for high DoF hands that generalise to novel objects, given as little as one demonstrated grasp. During grasp learning two types of probability density are learned that model the demonstrated grasp. The first density type (the contact model) models the relationship of an individual finger part to local surface features at its contact point. The second density type (the hand configuration model) models the whole hand configuration during the approach to grasp. When presented with a new object, many candidate grasps are generated, and a kinematically feasible grasp is selected that maximises the product of these densities. We demonstrate 31 successful grasps on novel objects (an 86% success rate), transferred from 16 training grasps. The method enables: transfer of dexterous grasps within object categories; across object categories; to and from objects where there is no complete model of the object available; and using two different dexterous hands.
机译:将灵巧的掌握概括为新颖的对象是一个开放的问题。我们展示了如何学习高DoF的手的抓握力,这些抓握力可以推广到新颖的物体,而仅需一个证明的抓握即可。在抓地力学习期间,学习了两种类型的概率密度,它们模拟了所展示的抓地力。第一密度类型(接触模型)对单个手指部分与其接触点处的局部表面特征之间的关系进行建模。第二种密度类型(手形模型)在抓握过程中对整个手形进行建模。当出现一个新对象时,会生成许多候选抓取,并且选择一种在运动学上可行的抓握,以最大程度地提高这些密度的乘积。我们展示了从16个训练抓取中转移出的31个对新颖对象的成功抓取(成功率为86%)。该方法能够:在对象类别内传递灵巧的抓握;跨对象类别;没有完整的对象模型可用的对象之间的往返;并使用两只不同的灵巧手。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号