首页> 外文期刊>IEEE transactions on automation science and engineering >Combining Analytical Modeling and Learning to Simplify Dexterous Manipulation With Adaptive Robot Hands
【24h】

Combining Analytical Modeling and Learning to Simplify Dexterous Manipulation With Adaptive Robot Hands

机译:将分析建模与学习相结合,以通过自适应机器人手简化灵巧操作

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we focus on the formulation of a hybrid methodology that combines analytical models, constrained optimization schemes, and machine learning techniques to simplify the execution of dexterous, in-hand manipulation tasks with adaptive robot hands. More precisely, the constrained optimization scheme is used to describe the kinematics of adaptive hands during the grasping and manipulation processes, unsupervised learning (clustering) is used to group together similar manipulation strategies, dimensionality reduction is used to either extract a set of representative motion primitives (for the identified groups of manipulation strategies) or to solve the manipulation problem in a low-d space and finally an automated experimental setup is used for unsupervised, automated collection of large data sets. We also assess the capabilities of the derived manipulation models and primitives for both model and everyday life objects, and we analyze the resulting manipulation ranges of motion (e. g., object perturbations achieved during the dexterous, in-hand manipulation). We show that the proposed methods facilitate the execution of fingertip-based, within-hand manipulation tasks while requiring minimal sensory information and control effort, and we demonstrate this experimentally on a range of adaptive hands. Finally, we introduce DexRep, an online repository for dexterous manipulation models that facilitate the execution of complex tasks with adaptive robot hands.Note to Practitioners-Robot grasping and dexterous, in-hand manipulations are typically executed with fully actuated robot hands that rely on analytical methods, computation of the hand object system Jacobians, and extensive numerical simulations for deriving optimal strategies. However, these hands require sophisticated sensing elements, complicated control laws, and are not robust to external disturbances or perception uncertainties. Recently, a new class of adaptive hands was proposed which uses structural compliance and underactuation (less motors than the available degrees of freedom) to offer increased robustness and simplicity. In this paper, we propose hybrid methodologies that blend analytical models with constrained optimization schemes and learning techniques to simplify the execution of dexterous, in-hand manipulation tasks with adaptive robot hands.
机译:在本文中,我们专注于混合方法的制定,该方法结合了分析模型,受约束的优化方案和机器学习技术,以简化自适应机器人手执行灵巧的手动操作任务。更精确地说,约束优化方案用于描述在抓握和操纵过程中自适应手的运动学,无监督学习(聚类)用于将相似的操纵策略分组在一起,降维用于提取一组代表性运动原语(针对已识别的一组操纵策略)或解决低维空间中的操纵问题,最后将自动实验设置用于无监督的大型数据集的自动化收集。我们还评估了模型和日常生活对象的导出的操纵模型和原语的能力,并分析了所得到的运动操纵范围(例如,在灵巧的手中操纵过程中实现的物体扰动)。我们表明,提出的方法有助于执行基于指尖的手内操作任务,同时需要最少的感官信息和控制力,并且我们在一系列自适应手上通过实验证明了这一点。最后,我们介绍了DexRep,这是一个灵巧操作模型的在线存储库,可帮助使用自适应机器人手执行复杂的任务。方法,手对象系统雅可比矩阵的计算以及用于推导最佳策略的大量数值模拟。然而,这些手需要复杂的感测元件,复杂的控制规律,并且对外部干扰或感知不确定性不强。最近,提出了一种新型的适应性指针,它利用结构的顺应性和欠驱动力(比可用自由度少的电动机)来提供增强的鲁棒性和简便性。在本文中,我们提出了混合方法,将分析模型与受约束的优化方案和学习技术融合在一起,以简化使用自适应机器人手的灵巧手操作任务的执行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号