首页> 外文会议>Energy minimazation methods in computer vision and pattern recognition. >Discrete Optimization of the Multiphase Piecewise Constant Mumford-Shah Functional
【24h】

Discrete Optimization of the Multiphase Piecewise Constant Mumford-Shah Functional

机译:多相分段常数Mumford-Shah泛函的离散优化

获取原文
获取原文并翻译 | 示例

摘要

The Mumford-Shah model has been one of the most powerful models in image segmentation and denoising. The optimization of the multiphase Mumford-Shah energy functional has been performed using level sets methods that optimize the Mumford-Shah energy by evolving the level sets via the gradient descent. These methods are very slow and prone to getting stuck in local optima due to the use of the gradient descent. After the reformulation of the bimodal Mumford-Shah functional on a graph, several groups investigated the hierarchical extension of the graph representation to multi class. These approaches, though more effective than level sets, provide approximate solutions and can diverge away from the optimal solution. In this paper, we present a discrete optimization for the multiphase Mumford Shah functional that directly minimizes the multiphase functional without recursive bisection on the labels. Our approach handles the nonsubmodularity of the multiphase energy function and provide a global optimum if prior information is provided.
机译:Mumford-Shah模型一直是图像分割和去噪中功能最强大的模型之一。多相Mumford-Shah能量泛函的优化已使用能级集方法进行,该方法通过通过梯度下降演化能级集来优化Mumford-Shah能量。这些方法非常慢,并且由于使用了梯度下降法,容易陷入局部最优状态。在图上重新构建双峰Mumford-Shah泛函后,几个小组研究了图表示到多类的层次扩展。这些方法虽然比级别集更有效,但它们提供了近似的解决方案,并且可能偏离最佳解决方案。在本文中,我们提出了针对多相Mumford Shah函数的离散优化,该函数直接最小化了多相函数,而无需在标签上进行递归二等分。我们的方法处理了多相能量函数的非子模量,并在提供先验信息的情况下提供了全局最优。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号