首页> 外文期刊>Image and Vision Computing >Combinatorial Optimization of the piecewise constant Mumford-Shah functional with application to scalar/vector valued and volumetric image segmentation
【24h】

Combinatorial Optimization of the piecewise constant Mumford-Shah functional with application to scalar/vector valued and volumetric image segmentation

机译:分段常数Mumford-Shah函数的组合优化及其在标量/矢量值和体积图像分割中的应用

获取原文
获取原文并翻译 | 示例

摘要

Front propagation models represent an important category of image segmentation techniques in the current literature. These models are normally formulated in a continuous level sets framework and optimized using gradient descent methods. Such formulations result in very slow algorithms that get easily stuck in local solutions and are highly sensitive to initialization. In this paper, we reformulate one of the most influential front propagation models, the Chan-Vese model, in the discrete domain. The graph representability and submodularity of the discrete energy function is established and then max-flow/min-cut approach is applied to perform the optimization of the discrete energy function. Our results show that this formulation is much more robust than the level sets formulation. Our approach is not sensitive to initialization and provides much faster solutions than level sets. The results also depict that our segmentation approach is robust to topology changes, noise and ill-defined edges, I.e., it preserves all the advantages associated with level sets methods.
机译:前传播模型代表了当前文献中图像分割技术的重要类别。这些模型通常在连续的水平集框架中制定,并使用梯度下降法进行优化。这样的公式导致算法非常慢,很容易卡在本地解决方案中,并且对初始化高度敏感。在本文中,我们在离散域中重新表述了最具影响力的正面传播模型之一,Chan-Vese模型。建立了离散能量函数的图形可表示性和子模量,然后应用最大流量/最小割方法进行了离散能量函数的优化。我们的结果表明,该公式比水平集公式更健壮。我们的方法对初始化不敏感,并且提供了比级别集更快的解决方案。结果还表明,我们的分割方法对于拓扑变化,噪声和边界不明确的情况是鲁棒的,即它保留了与级别集方法相关的所有优点。

著录项

  • 来源
    《Image and Vision Computing》 |2011年第6期|p.365-381|共17页
  • 作者单位

    Siemens Corporate Research, Department oflma&ng and Visualization Princeton, N] 08540, United States;

    Department of Mathematics, University of Louisville, Louisville, KY 40292, United States;

    Computer Science Department, University of Louisville, Louisville, KY 40292, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Active contours; Graph cuts; Image segmentation;

    机译:活动轮廓;图形切割;图像分割;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号